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Facultad de Ciencias Astronómicas y Geof́ısicas, UNLP, Argentina.
CITECCA, UNRN–Sede Andina, Argentina.

Instituto de Astrof́ısica de La Plata, UNLP–CONICET, Argentina.
Universidad de La Serena, Chile.

Last update: May 2021



The cover logo is a modified image taken from Hydra, the sixth studio album by Dutch sym-
phonic metal band Within Temptation.

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike
4.0 International License.

cbna

To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/

Please, find below a small html code that it is provided to copy into your webpage for citation purposes, in case you find it suitable.

<a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">

<img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-nc-sa/4.0/80x15.png" />

</a><br /><span xmlns:dct="http://purl.org/dc/terms/" href="http://purl.org/dc/dcmitype/Text" property="dct:title" rel="dct:type">

MilkyWayHydra. Descriptive Memory for the LP-VIcode</span> by

<a xmlns:cc="http://creativecommons.org/ns#" href="http://www.fcaglp.unlp.edu.ar/LP-VIcode/" property="cc:attributionName" rel="cc:attributionURL">

Maffione N.P., Gomez F.A. & Carpintero D.D.</a> is licensed under a

<a rel="license" href="http://creativecommons.org/licenses/by-nc-sa/4.0/">

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License</a>



Contents

1 Initiative: the LP-VIsuite project 1

2 Basics of the MilkyWayHydra 2.0 3

2.1 Short presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 The heads of the Hydra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 The nuclear region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.2 The peanut–shaped bulge . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.2.1 The bulge spheroid . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.2.2 The bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.3 The spiral arms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.4 The disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.4.1 Option (1): a MN profile . . . . . . . . . . . . . . . . . . . . 13

2.2.4.2 Option (2): an exponential profile . . . . . . . . . . . . . . . 13

2.2.4.2.1 The thin disk . . . . . . . . . . . . . . . . . . . . 14

2.2.4.2.2 The thick disk . . . . . . . . . . . . . . . . . . . 15

2.2.5 The dark matter halo . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.5.1 Option (1): a bi–triaxial extension of the NFW profile . . . . 18

2.2.5.2 Option (2): a modified logarithmic profile . . . . . . . . . . . 18

2.3 A Hydra 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.1 Goal: circular velocity curve . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2 Model: potential–density pair . . . . . . . . . . . . . . . . . . . . . . . 23

2.3.3 Result: a Milky Way–type galaxy . . . . . . . . . . . . . . . . . . . . . 23

2.4 Cosmological evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.1 Bar and spiral arms: growth factor η(t) . . . . . . . . . . . . . . . . . 24

3 Ongoing work: MilkyWayHydra 3.0 27

4 Final remarks 29

Acknowledgements 29

Bibliography 33

A The milkywayhydra.pav 35

III



IV CONTENTS

B Construction 37
B.1 First and second derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

B.1.1 The nuclear region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
B.1.2 The peanut–shaped bulge . . . . . . . . . . . . . . . . . . . . . . . . . 38

B.1.2.1 The bulge spheroid . . . . . . . . . . . . . . . . . . . . . . . 38
B.1.2.2 The bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

B.1.3 The spiral arms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
B.1.4 The disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
B.1.5 The dark matter halo . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

B.1.5.1 Option (1): a bi–triaxial extension of the NFW DMH . . . . 57
B.1.5.2 Option (2): a modified logarithmic DMH . . . . . . . . . . . 59

B.2 Equations of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
B.3 Linearized variational equations . . . . . . . . . . . . . . . . . . . . . . . . . . 62

C Description 65
C.1 The preamble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
C.2 The potinit subroutine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
C.3 The pot function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
C.4 The acelera subroutine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
C.5 The variac subroutine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
C.6 The ADD-REM parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
C.7 The working units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

D Validation 85
D.1 Generating the initial conditions . . . . . . . . . . . . . . . . . . . . . . . . . 85
D.2 Experiment on individual orbits . . . . . . . . . . . . . . . . . . . . . . . . . . 94

D.2.1 Using a TI model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
D.2.2 Using a PTD model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
D.2.3 Using a FTD model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

D.3 Experiments on a statistical sample of orbits . . . . . . . . . . . . . . . . . . 101
D.3.1 First experiment: relaxing the thin disk component . . . . . . . . . . . 101
D.3.2 Second experiment: computation of the equations of motion . . . . . . 108
D.3.3 Third experiment: computation of the first variational equations . . . 116

D.4 Computing times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
D.4.1 Experiment on individual orbits: with and without optimization . . . 120
D.4.2 Experiments on a statistical sample of orbits: with optimization . . . 121

D.4.2.1 First experiment . . . . . . . . . . . . . . . . . . . . . . . . . 121
D.4.2.2 Second experiment . . . . . . . . . . . . . . . . . . . . . . . . 121
D.4.2.3 Third experiment . . . . . . . . . . . . . . . . . . . . . . . . 122

D.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122



Chapter 1

Initiative: the LP-VIsuite project

The correct analysis of a given dynamical system rests on the reliable identification of the
chaotic or regular behaviour of its orbits. The most commonly used tools for such analyses
are based either on the study of the fundamental frequencies of the trajectories, or on the
study of the evolution of the deviation vectors, the so–called variational chaos indicators (CIs
hereafter). Therefore, it seems very useful to have a software with which one can compute
several CIs in an easy and fast way. But, what a about the object to study? Galaxies, as
probably the most complex stellar dynamical systems in near–field Cosmology, might be a
suitable starting point. Then, besides the software to compute the CIs, a ready-to-use realis-
tic galactic potential is also included in the package. This is the main goal of the LP-VIsuite

(the acronym for La Plata–Variational Indicators Suite).

The current version of the LP-VIsuite is composed of three basic elements, (1) the suite’s ker-
nel code: the LP-VIcode (the acronym for La Plata–Variational Indicators code, v. 2.0.2 code-
name “CONTROL” [5, 3]); (2) the automatic differentiation pre-processing slave program: SMART
(v. 1.2.3) and (3) a ready–to–use realistic Milky Way–type galaxy potential: MilkyWayHydra
(v. 2.0).

Hereinafter we describe the last element of the LP-VIsuite, the galactic potential. For further
information about the other elements of the suite, please visit the webpage of the project at:

http://www.fcaglp.unlp.edu.ar/LP-VIcode/

And for references related to the elements of the project, please visit the following:

The suite’s kernel code: the LP-VIcode

Carpintero, D., Maffione, N. & Darriba, L. 2014, Astronomy and Computing, 5, 19-27. [3]

The suite’s automatic differentiation pre-processing slave program: SMART
Carpintero, D. & Maffione, N. (submitted to Astronomy and Computing)

The suite’s ready–to–use realistic Milky Way–type galaxy potential: MilkyWayHydra
Maffione, N., Gómez, F. & Carpintero, D. (in prep. 2021)
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Chapter 2

Basics of the MilkyWayHydra 2.0

2.1 Short presentation

The actual version of the MilkyWayHydra (MWH for short) is a ready–to–use analytical but
exhaustively detailed (realistic) Milky Way–type galaxy potential. It comes in two flavours:
the original or pre–SMART version which includes the accelerations and variational equations
derived by hand, and the automatic or SMART version where both subroutines (i.e. acelera

and variac1) are automatically computed (as the name indicates) in a pre-processing stage
by the SMART code. The former performs much faster than the latter due to the fact that
accelerations and first variationals are also efficiently coded.

Current version 2.0 of MWH describes a galactic potential with the following components:

• THE NUCLEAR REGION:
A nuclear star cluster (NSC) with a supermassive black hole (SMBH) placed in
its centre is described by a Plummer potential.

• THE PEANUT–SHAPED BULGE:
The bulge spheroid is described by a Hernsquist profile and the bar by a three–
dimensional cuadrupole.

• THE SPIRAL ARMS:
The spiral arms are described by a N–armed spiral pattern outside of the bar region.

• THE DISK:
The disk can be described by two profiles:

1. a Miyamoto–Nagai (MN) profile,

2. an exponential profile.

• THE DARK MATTER HALO:
The dark matter halo (DMH) can be described by two models:

1Further details in the LP-VIcode manual, please find it at the official webpage of the project: http:

//www.fcaglp.unlp.edu.ar/LP-VIcode/
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1. a bi-triaxial extension of the Navarro–Frenk–White (NFW) DMH,

2. a modified logarithmic DMH.

The potential is written in standard Fortran77 following the rules specified by the suite’s
latest version of the kernel code: the LP-VIcode, and each of the galaxy components are
clearly identify by using separated blocks (every block is fully commented).

The result is the original or pre-SMART version of the milkywayhydra.pav file, which includes
the potential, the accelerations and the first variational equations ready to use with (exclu-
sively) the LP-VIcode.

Early versions of the milkywayhydra.pav has been successfully used in the following peer
reviewed papers: [17, 18, 19, 25, 12].

The MWH has been conceived mainly to represent late–type galaxies and, in particular, Milky
Way–type galaxies. Nevertheless, it can be used to represent early–type galaxies as well, due
to its straightforward programming style. This style of programming makes it easier for the
user to add, remove or modify the galactic components as desired. Actually, it is very simple
to build your own galaxy: the user will eliminate the galactic components (blocks in the
code) that are not needed by given a null value to some key parameters (namely, the ADD-REM

parameters which are described in Section C.6).

2.2 The heads of the Hydra

If not stated otherwise, the default values for the parameters of the MWH model were taken
from the Aq–C4/C5 simulations introduced in [20], one of their most likely Milky Way–
type galaxies, and the Auriga suite [13] (check their official website for further references at
https://wwwmpa.mpa-garching.mpg.de/auriga/).

Furthermore, the “Sun” is placed at (8, 0, 0), i.e. 8 kpc on the X–axis (long axis).

2.2.1 The nuclear region

The nuclear region is described by a Plummer sphere:

Φnuclear = − GMnuclear√
x2 + y2 + z2 + ε2nuclear

,

where Mnuclear is the total mass of the nuclear region which includes the NSC and the mass of
the SMBH, and εnuclear is the scale length of the system (softening parameter), which defines
the outer limit of the inner core.

The default values of the parameters in the MWH are the following: the mass, Mnuclear =
2× 108 M� and the softening parameter, εnuclear = 0.03 kpc, being the latter taken from [14].

https://wwwmpa.mpa-garching.mpg.de/auriga/
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Figure 2.1: Potential–density pair for the nuclear region. Top panels: outside (left) and inside
(right) potential views. Bottom panel: isodensities projected on the center planes. The region
depicted is three times the scale length of the component.

In Fig. 2.1 we show the potential–density pair of our representation of the nuclear region.
Top panels: the potential from an outside (left panel) and from an inside (projections on
the center planes, right panel) viewpoint. Bottom panel: isodensities projected on the center
planes are also depicted to give a global picture of the nuclear region component.

2.2.2 The peanut–shaped bulge

The abovementioned nuclear region dominates the most inner parts of the galaxy. On the
other hand, the stellar bulge that we describe below, dominates the region between ∼ 0.4 and
∼ 3 kpc [14].

2.2.2.1 The bulge spheroid

The bulge spheroid is described by the Hernquist profile:

Φbulge = −
GMbulge√

x2 + y2 + z2 + εbulge
,
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Figure 2.2: Potential–density pair for the bulge spheroid. Top panels: outside (left) and inside
(right) potential views. Bottom panel: isodensities projected on the center planes. The region
depicted is three times the scale length of the component.

where Mbulge is the mass, and εbulge is the scale length (or softening parameter).

The default values of the parameters in the MWH are the following: the mass, Mbulge =
4.74× 109 M� and the softening parameter, εbulge = 0.835 kpc.

In Fig. 2.2 we show the potential–density pair of our representation of the bulge spheroid.
Top panels: the potential from an outside (left panel) and from an inside (projections on
the center planes, right panel) viewpoint. Bottom panel: isodensities projected on the center
planes are also depicted to give a global picture of the bulge spheroid component.

2.2.2.2 The bar

The following description of the bar [in italics] is taken from [22]: The bar potential is a 3D
version of the pure quadrupole model used by, e.g. Weinberg (1994) and Denhen (2000). It
reads:

Φbar(R,φ, z, t) = α
v2

0

3

(
R0

Rb

)3

U(r)
R2

r2
cos(γb),
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where r2 = R2 +z2 is the spherical radius, Rb is the length of the bar, R0 is the Galactocentric
radius of the Sun, and v0 is the circular velocity at R0, γb(φ, t) ≡ 2 (φ− φb − Ωb t), and

U(r) ≡


−(r/Rb)

−3 for r ≥ Rb,

(r/Rb)
3 − 2 for r < Rb.

The amplitude α is the ratio between the bar’s and axisymmetric contribution to the radial
force, along the bar’s long axis at (R, z) = (R0, 0)2.

The default values of the parameters in the MWH are the following: α = 0.01 as in [22],
Ωb = −52.2 km s−1kpc−1 so that Ωb/Ω(R0) = 1.893 [1], Rb = 3.5 kpc, and φb is chosen such
that at the end of the simulations: te

4, the bar major axis has a −25◦ inclination w.r.t. the
line connecting the Sun and the center of the Galaxy5, i.e., φb+Ωb te = −25◦ [7], where te cor-
responds to the present time (i.e. the end of the simulations, as mentioned before)6. The bar
constructed in this way does not modify the Galaxy’s total mass and circular velocity curve.
Finally we need to compute φb: φb+Ωb te = −25◦, which means φb−52.2 ·6.135 = 67

36π where
[te] = u.t. (te = 6.135 u.t. = 6 Gyr) and the angle units has been changed to rad (−25◦ = 67

36π).
Then φb = 5.65. Furthermore, Ωb = −52.2 ·3.24078×10−17 ·3.15576×1016 = −53.39 in units
of Gyr−1 (1 km = 3.24078 × 10−17 kpc and 1 Gyr = 3.15576 × 1016 s), then the bar pattern
period is ∼ 117 Myr (or around 0.120 u.t.).

In Fig. 2.3 we show the potential–density pair of our representation of the bar at the end of the
simulations, te = 6.135 u.t. = 6 Gyr. Top panels: the potential from an outside (left panel)
and from an inside (projections on the center planes, right panel) viewpoint. Bottom panel:
isodensities projected on the center planes are also depicted to give a global picture of the
bar component region. Notice the positive and negative regions in the density plot. The rea-
son is that the bar pattern should always be used as a perturbation of a background potential.

In Fig. 2.4 we show the 1d potential along the positive X–axis (φ = z = 0) for three different
integration times: 0, 3 and 6 Gyr (in u.t.). No cosmological evolution is considered here for α,
and the latter has the fixed value α = 0.01 for every integration time, details in Section 2.4.
Indeed, if we consider adiabatic growth, α(t) = α·η(t) and the potential at time t = 0 would be
zero, due to the fact that the bar pattern would have null amplitude, i.e. α(0) = 0. However,
the other plots would remain the same because α(3.068) = α(6.135) = 0.01, i.e. α reaches
its maximum at t = 3 Gyr so α = 0.01, and at the end of the simulation, t = 6 Gyr, we have
α = 0.01 again as if no cosmological evolution were considered in the first place (Section 2.4.1).

2See Section 2.4.1 for a fully time dependent description of this parameter.
3In [22], the authors use a positive velocity, but inhere we use a negative velocity to have a clockwise

rotation pattern for the bar.
4In the simulations the final time is 6 Gyr, likewise in [22].
5In [22], the authors use a positive angle, but inhere we use a negative angle because following [7], the Sun’s

azimuth (w.r.t. the bar major semiaxis) has a value between 10◦ and 45◦, so the tilt angle of the bar w.r.t.
the line connecting the Sun and the galactic center should be negative.

6The unit of time for te is u.t., see Section C.7 for further references on the unit system in the MWH.
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Figure 2.3: Potential–density pair for the bar. Top panels: outside (left) and inside (right)
potential views. Bottom panel: isodensities projected on the center planes. The region
depicted is two times the length of the bar Rb, i.e. ∼ 7 kpc at each side.

Figure 2.4: 1d potential of the bar pattern along the positive X–axis (φ = z = 0) for three
different integration times (see text for details).

The representation of the bar is a pure cuadrupole, then it is a good approximation far away
from the origin (multipolar expansion). However, there is consensus on that it is better to
model the bar poorly than not modelled it at all. On behalf of this line of thinking we are
keeping the same representation in the innermost part of the potential, without including any
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exclusion parameter. We do otherwise in case of the spiral arms (see next section).

2.2.3 The spiral arms

The following description of the spiral arms using a N–armed potential is taken from [22]
[in italics]: It could be that the Galaxy’s spiral pattern is composed of multiple modes with
different pattern speeds (e.g. Quillen et al. 2011; Sellwood & Carlberg 2014), but observations
indicate that the non–axisymmetric part of the old stellar component of the Milky Way disc
is dominated by a two–armed spiral pattern outside of the bar region (namely, the Scutum–
Centaurus and Perseus arms, Benjamin et al. 2005; Churchwell et al. 2009). Therefore,
we consider a spiral perturbation consisting in a two–armed model, in the form originally
proposed by Cox & Gómez (2002):

Φspiral(R,φ, z, t) = − A

RsKD
· e−

(R−Rs)
Rsd cos(γs)

[
sech

(
Kz

β

)]β
,

where: 

K(R) = N
R sin(p) ,

β(R) = K(R)hs [1 + 0.4K(R)hs] ,

D(R) = 1+K(R)hs+0.3[K(R)hs]
2

1+0.3K(R)hs

γs(R,φ, t) = N
[
φ− φs − Ωst− ln(R/Rs)

tan(p)

]
.

Here, p is the pitch angle, A the amplitude of the spiral potential7, hs controls the scale–height
of the spiral, and Rs is the reference radius for the angle of the spirals.

The default values of the parameters in the MWH are the following: N = 2 in order to have a
two–armed spiral pattern (see further details on a generalization of this pattern at the end
of this section), Rs = 1 kpc, Rsd = 3.124 kpc (in agreement with the scale length of the stel-
lar disk, see Section 2.2.4) and Ωs = −18.9 km s−1kpc−1, φs + Ωste = 26◦ and p = 9.9◦

[2]. Moreover, we specify two values for A: the first corresponds to a 30 per cent den-
sity contrast of the spiral arms w.r.t. the background disc surface density at R0 (’reference
spirals’, A = 341.8 km2s−2), the second to a 60 per cent density contrast (’strong spirals’,
A = 683.7 km2s−2). With these values of A, the spiral arms produce a maximum radial force
of 0.5 per cent (reference spirals) and 1 per cent (strong spirals) of the force due to the ax-
isymmetric background at R = R0. We also use an amplitud that corresponds to a 200 per
cent density contrast (super strong spirals), A = 2279 km2s−2 in order to clearly see the
spiral pattern perturbation (the latter being the default value in the MWH). Finally we need
to compute φs: φs + Ωs te = 26◦, which means φs − 18.9 · 6.135 = 0.454 where [te] = u.t.
(te = 6.135 u.t. = 6 Gyr) and the angle units has been changed to rad (26◦ = 0.454). Then
φs = 3.31. Furthermore, Ωs = −18.9 · 3.24078 × 10−17 · 3.15576 × 1016 = −19.33 in units of

7See Section 2.4.1 for a fully time dependent description of this parameter.
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Figure 2.5: Potential–density pair for the spiral pattern outside the corrotation radius. Top
panels: outside (left) and inside (right) potential views. Bottom panel: isodensities projected
on the center planes. The region depicted is the usual extension of the Milky Way spiral arms
(i.e. ∼ 15 kpc at each side).

Gyr−1, then the spiral pattern period is ∼ 330 Myr (or around 0.340 u.t.).

In Fig. 2.5 we show the potential–density pair of our representation of the spiral arms (“super
strong spirals”, 200 per cent density contrast) at the end of the simulations, te = 6.135 u.t. =
6 Gyr. Top panels: the potential from an outside (left panel) and from an inside (projections
on the center planes, right panel) viewpoint. Bottom panel: isodensities projected on the cen-
ter planes are also depicted to give a global picture of the spiral arms component. The plots
are truncated inside the corrotation radius (∼ 4.08 kpc) because not only its representation
is no longer adequate but also the spiral arms are a second–order perturbation in that region
(see discussion below, and Fig. 2.7). Notice once again that there are positive and negative
regions in the density plot. The reason is that the spiral pattern (like the bar pattern) should
always be used as a perturbation of a background potential.
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Figure 2.6: 1d potential of the spiral pattern outside the corrotation zone and along the
positive X–axis (φ = z = 0) for three different integration times (see text for details).

In Fig. 2.6 we show the 1d potential along the positive X–axis (φ = z = 0) for three dif-
ferent integration times: 0, 3 and 6 Gyr (in u.t.). No cosmological evolution is considered
here for A, and the latter has the fixed value A = 2279 km2s−2 for every integration time,
details in Section 2.4. Indeed, if we consider adiabatic growth, A(t) = A · η(t) and the
potential at time t = 0 would be zero, due to the fact that the spiral pattern would have
null amplitude, i.e. A(0) = 0 km2s−2. However, the other plots would remain the same
because A(3.068) = A(6.135) = 2279 km2s−2, i.e. A reaches its maximum at t = 3 Gyr so
A = 2279 km2s−2, and at the end of the simulation, t = 6 Gyr, we have A = 2279 km2s−2

again as if no cosmological evolution were considered in the first place (Section 2.4.1).

As mentioned before, the spiral arms representation is discarded inside the corrotation radius
due to being poorly adequate for those inner locations, but also (and may be more impor-
tant) because it is a second–order perturbation inside that region which is dominated by the
bar8. Fig. 2.7 presents the potential of the spiral pattern (“super strong spirals”, 200 per
cent density contrast: left panels), bar pattern (middle panels) and the potential of both
combined (right panels) in the region inside 3.5 kpc (the length of the bar). It is clear that
the potential of the bar is the main perturber and then, the spiral arms can be safely neglected.

A generalized N–armed potential: the method to generalized our spiral pattern repre-
sentation is the one explained in [4]. The user can add more modes by playing with the values
of n and N in the series:

Φspiral(R,φ, z, t) = − A

Rs
· e−

(R−Rs)
Rsd

∑
n

Cn

KnDn
cos(γsn)

[
sech

(
Knz

βn

)]βn
,

where:

8Let us remind the reader that the bar is poorly represented by our model in the inner regions too, however
the model is still used in such locations: the bar in the inner regions is still a first-order perturbation, so it is
better to use such representation that not using anything at all. Situation changes here due to the fact that
the spiral pattern is no longer a first-order but a second-order perturbation. See Fig. 2.7 and text below.
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Figure 2.7: Potential of the spiral pattern (left panels), bar pattern (middle panels) and the
potential of both combined (right panels) in the region inside 3.5 kpc (the length of the bar).
Top and bottom panels show the potentials from different viewpoints (barely tilted to the
front and from above, respectively).



Kn(R) = nN
R sin(p) ,

βn(R) = Kn(R)hs [1 + 0.4Kn(R)hs] ,

Dn(R) = 1+Kn(R)hs+0.3[Kn(R)hs]
2

1+0.3Kn(R)hs

γsn(R,φ, t) = nN
[
φ− φs − Ωst− ln(R/Rs)

tan(p)

]
.

and Cn are some coefficients. Notice, then, that the series is composed of terms which general
expression is that of our previously described two–armed potential, with some minor changes
(for instance, 2→ N). Then, all the first and second derivatives available in the MWH are the
same for all those terms (albeit some constant), and the user can build a general N–armed
potential with its equations of motion and first variational equations by simply (but carefully)
adding those expressions.

2.2.4 The disk

The MWH offers two different options to represent the disk.
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a) Option (1): a Miyamoto–Nagai profile offers analytical and fairly simple expres-
sions for the first and second derivatives of the disk potential in order to compute the
equations of motion as well as the first variational equations.

b) Option (2): an exponential profile for the mass distribution had to be avoided
given that the resolution of the Poisson equation to obtain the potential, leads to Bessel
functions and need to be integrated numerically. Instead, we used a combination of MN
disks to build disk potentials with such exponential mass profiles (see [26]) and keep the
analytical and rather simple form of the first and second derivatives at the same time.

2.2.4.1 Option (1): a MN profile

We first introduce the well–known MN disk potential:

Φdisk = − GMdisk√
x2 + y2 +

(
εs +

√
z2 + ε2h

)2
,

where Mdisk is its mass, and εs and εh are the scale length and scale height of the disk, re-
spectively.

The default values of the parameters in the MWH are the following: the mass, Mdisk =
5.961 × 1010 M�, εs = 3.124 kpc and εh = 0.3 kpc, the scale length and scale height of the
disk, respectively.

In Fig. 2.8 we show the potential–density pair of our representation of the MN disk.

Option (1) can be extended to be a two–component MN disk in a very easy way: the default
MN disk that already appears in the milkywayhydra.pav file, should correspond to the thin
(thick) disk profile, while another MN disk need to be added describing the thick (thin) disk
profile. Then, the sum of both disks would correspond to a two–component (thin+thick) MN
disk. Of course, it is necessary to add the blocks accounting for the first and second derivatives
of the second MN disk in the corresponding subroutines of the milkywayhydra.pav file as
well (just copy and paste the blocks of the first MN disk and change the labels in order to
distinguish each MN disk block from the other).

2.2.4.2 Option (2): an exponential profile

Option (2) uses a combination of MN disks to build a double exponential mass profile for the
disk, following the work of [26]. Therefore, the exponential disk has the density profile:

ρ(R, z) = ρ0 exp(−R/Rd) exp(−|z|/hz),

with R the radial coordinate on the plane, and where the double–exponential is described by
the parameters ρ0, Rd and hz, which are the central density, the scale length and the scale
height of the disk density profile, respectively.

In the following we are going to describe the thin and thick disks components in the framework
of a two–component disk for the current option (2), which is a more delicate matter than for
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Figure 2.8: Potential–density pair for the MN disk. Top panels: outside (left) and inside
(right) potential views. Bottom panel: isodensities projected on the center planes. The
region depicted is five times the scale length of the density profile.

option (1) (that is the reason why the two–component exponential disk is completely coded
in the milkywayhydra.pav file).

2.2.4.2.1 The thin disk

The default values of the parameters representing a double–exponential density profile for the
thin disk in the MWH are as follows: Mthin

disk = 5.276× 1010 M� (88.5% of the single disk mass of
the MN profile), Rthin

d = 3.124 kpc and hthinz = 0.3 kpc. Thus, we are applying the recipe of
[26] to obtain the parameter values for the three MN disks which combination resemble the
latter double–exponential profile:

First, we take the geometrical parameters of the density profile Rthin
d = 3.124 kpc and hthinz =

0.3 kpc and use (left panel of Fig. 5, [26]) the formula:

εthinh /Rthin
d = −0.269(hthinz /Rthin

d )3 + 1.080(hthinz /Rthin
d )2 + 1.092(hthinz /Rthin

d ),

with hthinz /Rthin
d = 0.09603073 to find the scale height of the three MN disks: εthinh . The

result is εthinh = 0.357969749 kpc. Second, the ratio εthinh /Rthin
d = 0.114586988 is smaller than
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1.35, so we use formula (7) with the coefficients of Table 2 from [26] (in order to have positive
densities everywhere, i.e. it is not necessary to use it with a background potential) to obtain
the scale parameters of the mass and scale lengths9:

M1 = 0.161020249

M2 = -5.76795197

M3 = 6.7217927

a1 = 0.560698032

a2 = 2.57529044

a3 = 2.24318123

Finally, the values for the three MN disks that build up the double exponential profile are:

[M1×Mthin
disk] 0.161020249× 5.276× 1010 → M1thindisk = 0.849542834× 1010;

[M2×Mthin
disk] −5.76795197× 5.276× 1010 → M2thindisk = −30.43171459× 1010;

[M1×Mthin
disk] 6.7217927× 5.276× 1010 → M3thindisk = 35.46417829× 1010;

[a1×Rthin
d ] 0.560698032× 3.124→ εthins1 = 1.751620652;

[a2×Rthin
d ] 2.57529044× 3.124→ εthins2 = 8.045207335;

[a3×Rthin
d ] 2.24318123× 3.124→ εthins3 = 7.007698163.

Summary: the values of the parameters for the three MN disks that build up the double–
exponential thin disk are the following: M1thindisk = 0.849542834×1010 M� and εthins1 = 1.751620652 kpc;
M2thindisk = −30.43171459 × 1010 M� and εthins2 = 8.045207335 kpc; M3thindisk = 35.46417829 ×
1010 M� and εthins3 = 7.007698163 kpc and all of them with the same scale height given by
εthinh = 0.357969749 kpc. The fit produces 3MN models that match a radially exponential
disc to < 1.0 per cent out to 4Rthin

d ∼ 12.5 kpc and . 6.0 per cent out to 10Rthin
d ∼ 31.24 kpc

(see Figure 2 of [26], using b/Rd = εthinh /Rthin
d = 0.114586988)10.

In Fig. 2.9 we show the potential–density pair of our representation of the thin disk.

2.2.4.2.2 The thick disk

The default values of the parameters representing a double–exponential density profile for the
thick disk in the MWH are as follows: Mthick

disk = 0.686× 1010 M� (11.5% of the single disk mass
of the MN profile), Rthick

d = 3.124 kpc and hthickz = 1 kpc (like [22]). As before, we apply the
recipe of [26] to obtain the parameter values for the three MN disks that resemble the latter
double–exponential profile (see Section 2.2.4.2.1 for further details on the process).

Summary: the values of the parameters for the three MN disks that build up the double–
exponential thick disk are the following: M1thickdisk = 0.922758707 × 109 M� and εthicks1 =
0.908485192 kpc; M2thickdisk = −39.22621231× 109 M� and εthicks2 = 7.026555501 kpc; M3thickdisk =

9A user–friendly online webform is kindly provided by [26] to compute all these quantities, see http:

//astronomy.swin.edu.au/~cflynn/expmaker.php
10Accuracy matching can be improved for > 10Rthin

d to values < 3.3 per cent if we allow the 3MN model to
have negative densities in the outer parts. Being that the case, it must be used with a background potential,
and the user should follow the specs of Table 1 and Figure 1 from [26] instead of Table 2 and Figure 2 as
inhere.

http://astronomy.swin.edu.au/~cflynn/expmaker.php
http://astronomy.swin.edu.au/~cflynn/expmaker.php
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Figure 2.9: Potential–density pair for the thin disk. Top panels: outside (left) and inside
(right) potential views. Bottom panel: isodensities projected on the center planes. The
region depicted is five times the scale length of the density profile.

46.18578795 × 109 M� and εthicks3 = 6.213630283 kpc and all of them with the same scale
height given by εthickh = 1.41014739 kpc. The fit produces 3MN models that match a radi-
ally exponential disc to < 1.0 per cent out to 4Rthin

d ∼ 12.5 kpc and . 7.0 per cent out to
10Rthin

d ∼ 31.24 kpc (see Figure 2 of [26], using b/Rd = εthinh /Rthin
d = 0.45139161)11

In Fig. 2.10 we show the potential–density pair of our representation of the thick disk.

Comment on the stellar halo

The stellar halo may be oblate and then, it can strengthen the chaotic effects given by the
triaxiality of the dark matter halo [6]. However, its mass is ∼ 1% of the stellar component of
the galaxy. Then, for many studies its representation can be safely neglected and that is the
main reason why the current version of the MWH does not have a stellar halo component: it

11Accuracy matching can be improved for > 10Rthin
d to values < 3.3 per cent if we allow the 3MN model to

have negative densities in the outer parts. See footnote in Section 2.2.4.2.1.
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Figure 2.10: Potential–density pair for the thick disk. Top panels: outside (left) and inside
(right) potential views. Bottom panel: isodensities projected on the center planes. The region
depicted is five times the scale length of the density profile.

is not a priority component because it might be important just for a very particular line of
research.

2.2.5 The dark matter halo

Finally, the hypothetical outermost galactic component: the DMH. The MWH offers two differ-
ent options to represent such component.

a) Option (1): a bi–triaxial extension of the NFW DMH used in [28]. Vogelsberger
et al. introduce a transition scale to have a triaxial profile (defined by an ellipsoidal
radius) in the inner regions while leaving the outer regions round shaped as dark matter
only simulations showed. In [19] we apply a second parameter to introduce triaxiality
in the outer parts as well. The idea is to have an oblate profile in the inner regions
due to the impact of baryonic matter, while leaving the outer regions mildly triaxial as
hydrodynamic simulations show.
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b) Option (2): a modified logarithmic DMH formerly used in [27]. The authors
try to fit the observations of the Sagittarius Dwarf Galaxy [15] but at the same time
guaranteeing a stable configuration for the disk. Therefore, they also use a transition
scale to obtain an oblate (axisymmetric) shape in the inner parts (as hydrodynamic
simulations suggest) and triaxial in the outer parts because of the effect of the Sagittarius
Dwarf Galaxy orbit (and round shaped in the outermost regions).

2.2.5.1 Option (1): a bi–triaxial extension of the NFW profile

Option (1) is described by the following expression:

Φdmh = −Ad

r′
ln

[
1 +

r′

rs

]
,

where Ad = G M200

ln(1+cnfw)− cnfw
1+cnfw

and r′ = (rs+roe)
rs+rie

rie the modified scale radius adapted from [28].

Furthermore, r2
ie = x2

a2 + y2

b2
+ z2

c2
is the inner ellipsoidal radius while r2

oe = x2

a′2 + y2

b′2 + z2

c′2 is its
outer counterpart. Both ellipsoidal radii satisfy the condition that the sum of their squared
semi–axes is equal to three: a2 + b2 + c2 = a′2 + b′2 + c′2 = 3. Finally, rs = r200/cnfw.

The default values of the parameters in the MWH are the following: M200 = 145.64× 1010 M�,
r200 = 234.5 kpc and rs = 14.63 kpc (then, cnfw = 16.0287081). The values of the inner semi–
axes are a = 1.023737002, b = 1.010633169, c = 0.964667377, then inside the first 10 kpc we
have an oblate shape given by b/a = 0.9872 and c/a = 0.9423. In case of the outer semi–axes,
the values are a′ = 1.069901231, b′ = 0.984309133, c′ = 0.941513084, so between 40 kpc and
70 kpc we have a more triaxial shape: b′/a′ = 0.92 and c′/a′ = 0.88.

In Fig. 2.11 we show the potential–density pair of our representation of the DMH. Top panels:
the potential from an outside (left panel) and from an inside (projections on the center planes,
right panel) viewpoint in the inner 8 kpc region. Middle panels: idem top row but for the
region enclosed by the first 25 kpc, i.e. beyond the transition scale at rs = 14.63 kpc. Bottom
panels: isodensities projected on the center planes are also depicted in both regions (inside
8 kpc on the left and inside 25 kpc on the right) to give a global picture of the DMH component.

2.2.5.2 Option (2): a modified logarithmic profile

This form for the DMH potential describes an ellipsoid rotated by an angle φ about the
galactic Z–axis, in which q1 and q2 are the axial flattenings along the equatorial axes and qz
is the axial flattening perpendicular to the galactic disk. The transition scale is introduced
like [28]:

Φdmh = v2
halo ln[(r?)2 + d2],

with r? = (rs+roe)
rs+rie

rie, r
2
ie = x2 + y2 + z2

q2
z
, r2

oe = Wx2 + Vy2 + Uxy + z2

q2
3

and W =
a2

1

q2
1

+
a2

2

q2
2
,

V =
a2

1

q2
2

+
a2

2

q2
1
, U = 2a1a2

(
1
q2
1
− 1

q2
2

)
, where a1 = cos(φ), a2 = sin(φ).
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Figure 2.11: Potential–density pair for the (option 1) DMH. Top panels: outside (left) and
inside (right) potential views of the innermost region. Middle panels: idem top panels but for
the regions beyond the transition scale. Bottom panels: isodensities projected on the center
planes for both regions.
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The default values of the parameters in the MWH are the following: the halo mass renormal-
ization parameter is vhalo = 176.26 km/s in order to have a vLSR(R� = 8 kpc) = 225.2 km s−1

(the effect of the LMC is not taken into account, see [27] for further details). Therefore, the
vhalo parameter need to be re-computed for each particular model (see below). The softening
parameter is d = 12 kpc and the transition scale, rs = 30 kpc, is selected by the authors such
that the region of dominance of the disk resides inside the axisymmetric part of the halo
potential. However, the effective transition between the axisymmetric and triaxial regions
occurs at a smaller radius, around 10 kpc. Furthermore, the tilt angle is φ = 277◦ (as in the
MWH the Sun is located at +8 kpc on the X–axis), qz = 0.9, q1 = 1.38, q2 = 1 and q3 = 1.36
(once again, the effect of the LMC is not considered). Finally, notice that if we are in the inner

region, i.e. rie � rs and roe � rs, then: r? ' rie, an oblate profile given that r2
ie = x2+y2+ z2

q2
z

and qz = 0.9. On the other hand, if we are in the outer region, where rie � rs as well as
roe � rs, then r? ' roe, with a mildly triaxial profile (somehow prolate given that q1 = 1.38,

q2 = 1, q3 = 1.36) and rotated: r2
oe = Wx2 + Vy2 + Uxy + z2

q2
3
.

In Fig. 2.12 we show the potential–density pair of our representation of the DMH. Top panels:
the potential from an outside (left panel) and from an inside (projections on the center planes,
right panel) viewpoint in the inner 12 kpc region (i.e. inside the softening parameter value).
Middle panels: idem top row but for the region enclosed by the first 40 kpc, i.e. beyond the
transition scale at rs = 30 kpc. Bottom panels: isodensities projected on the center planes
are also depicted in both regions (inside 12 kpc on the left and inside 40 kpc on the right) to
give a global picture of the DMH component.

The value vhalo = 176.26 km/s given here is computed for the time independent MWH 2.0 model
using all the default values for the rest of the galactic components. That is, we are considering
the nuclear region, the spheroidal component of the bulge, the thin and thick exponential disks
and, of course, option 2 of the DMH. In Fig. 2.13 we show the circular velocity of the model
mentioned before. Indeed, notice that at 8 kpc we have vLSR = 225.2 km s−1, as expected
after the calibration of the vhalo.

2.3 A Hydra 2.0

The goal of this section is to show a Milky Way–type galaxy (Hydra 2.0) by choosing one
of the many posible MWH configurations. In this case, we are trying to capture roughly the
potential form of the Aq–C5 model, from [20], one of their most likely Milky Way galaxies.
In that regard, we are considering a MWH consisting of: a nuclear region, a peanut–shaped
bulge, two–armed spiral pattern (“super strong spirals”), two–component exponential stellar
disk and the option (1) for the DMH, all of them calibrated with the default values of the
parameters (see previous Section 2.2 for further details).

2.3.1 Goal: circular velocity curve

In Fig. 2.14 (left panel) we show rotation curves for model Aq–C5 (Fig. 19 in [20]). The
total rotation curve is depicted in solid black. On the right panel we show the rotation curve
for our Hydra 2.0 model, which time independent part in solid blue line try to mimic the
Aq–C5 (the full time dependent model is depicted in solid red line, i.e. bar and spiral arms
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Figure 2.12: Potential–density pair for the (option 2) DMH. Top panels: outside (left) and
inside (right) potential views of the innermost region. Middle panels: idem top panels but for
the regions beyond the transition scale. Bottom panels: isodensities projected on the center
planes for both regions.

are included). The resemblance between the rotation curves is auspicious.

Now that we have reproduced one fundamental constraint given by the circular velocity curve
of the target galaxy, we can describe the full MWH Hydra 2.0 model that is behind.
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Figure 2.13: Circular velocity for (option 2) DMH. The model obeys the relation vLSR(R� =
8 kpc) = 225.2 km s−1 (indicated with grey solid lines) due to the calibration of the halo mass
renormalization parameter, that results in the value of vhalo = 176.26 km/s.

Disc galaxies in moving-mesh simulations 1769

galaxies experience strong outflows, including repeated ‘explosive’
ones from strong quasar feedback, it is interesting to check to what
extent we can confirm this finding in our simulations.

5.1 Rotation curves

The detailed shape of the rotation curve of a galaxy encodes key
information about the mass distribution within the system. For in-
stance, a pronounced peak of the rotation velocity in the innermost
regions followed by a rapid decline is indicative of the presence of a
massive and compact structure (often associated with a large, dom-
inant stellar bulge in earlier simulation work of galaxy formation,
see also Scannapieco et al. 2012), whilst late-type spirals are char-
acterized by an almost flat profile of the rotational velocity which in
the outer parts requires dark matter if the ordinary laws of gravity
hold.
In Fig. 19, we present the rotation curves of our simulated galax-

ies. Contributions to the total rotation velocity (solid lines) have
also been separately computed via vc(r) =

√
GM(< r)/r) for the

primary mass components that constitute each galaxy: stars (dotted
lines), gas (dashed lines) and dark matter (dot–dashed lines). Points
with error bars show instead the (mass-weighted) rotation veloc-
ity of cold star-forming gas within 0.1 × Rvir around the galaxy
symmetry axis. With the exception of Aq-E, all galaxies have ap-
proximately flat rotation curves that show a rapid rise in the centre
followed by a slowly declining trend after the maximum velocity
has been reached. Baryons (in the form of stars) tend to dominate
only in the innermost couple of kpc. However, for systems Aq-D,
Aq-E and Aq-F this behaviour extends out to about 10 kpc and is
responsible for the appearance of a more pronounced peak in the
rotation profiles. These galaxies have pronounced central bulges

(and also the largest stellar masses), with Aq-E leading the set in
this respect. Aq-G has the least massive stellar distribution in the
inner parts and is dark matter dominated everywhere except for the
innermost kpc.
For what concerns the gas component, its contribution to the cir-

cular velocity is quite subdominant but not completely negligible
either, since velocities of up to ≈50 km s−1 are reached. Again, the
exception is represented by the gas-poor system Aq-E, where only
a maximum velocity of≈35 km s−1 is attained. It is also interesting
to note that the shapes of the gas rotation curves are rather different
with respect to those of the other components, especially in systems
Aq-B, Aq-C, Aq-F and Aq-H. This likely reflects a depletion of
(cold) gas in the central regions due to the efficient star formation
and associated feedback processes operating there. The actual kine-
matics of the gas closely follows the computed rotation velocity
profiles, showing that the star-forming gas phase settles into a ro-
tationally supported gaseous disc. In some of the haloes a sudden
drop in the gas rotation velocity can be observed, and the radius at
which this break occurs indicates the radial extension of the cold
gas component.
Fig. 20 is complementary to Fig. 19 in the sense that it presents

again the rotation curves of our simulated galaxies but this time the
points with error bars show the rotation velocity of disc stars, that is
stars with r< 0.1× Rvir and circularity parameter ϵ > 0.7. Again, it
is readily apparent that disc stars chosen according to this kinematic
criterion comprise a rotationally supported structure.

5.2 Baryonic physics impact on dark matter

The modification of the dark matter structure of a Milky Way-sized
halo due to baryonic effects is an extremely interesting, and so far

Figure 19. Rotation curves (vc(r) =
√

GM(< r)/r) for the eight Aquarius haloes at z = 0. Different line types give the contributions of various mass
components to the total circular velocity: stars (dotted lines), dark matter (dot–dashed lines) and gas (dashed lines). The total rotation curves are given by solid
lines, while points with error bars show the rotation velocity of the star-forming gas within 0.1 × Rvir. It is apparent that in most of the cases quite flat rotation
curves are present. Some haloes (Aq-D, Aq-E and to a lesser degree Aq-F) however show that a spheroidal stellar structure (i.e. a bulge) still provides the
dominant contribution to the circular velocity in the centre. The position of the sudden drop in the star-forming gas rotation velocity that can be observed in
some of the haloes is set by the extension of this component.
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Figure 2.14: Circular velocity curves. Left panel: different line types give the contributions
of various mass components to the total circular velocity: stars (dotted green lines), dark
matter (dot–dashed red lines) and gas (dashed blue lines). The total rotation curves are
given by solid (black) lines, while (grey) points with error bars show the rotation velocity
of the star–forming gas (image taken from [20]). Right panel: total rotation curve for our
model. In solid blue line the time independent model, in solid red line the full time dependent
model (i.e. bar and spiral arms are included). Compare both curves on the right panel with
the solid black line in the left panel.
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Figure 2.15: Potential–density pairs inside ∼ 7 kpc. Left panels: isopotentials. Middle panels:
isodensities projected on the center planes. Right panels: isodensities on the plane.

2.3.2 Model: potential–density pair

Figs. 2.15 and 2.16 show potential–density pairs for our Milky Way–type Hydra 2.0 model
from the inside out. On the left column we show isopotentials from an outside viewpoint,
middle column presents projections of the isodensities on the center planes, and right column,
top viewpoint of the latter. The consecutive regions of dominance of the bar, then the disk
and finally of the DMH, as expected, is clearly shown when going away from the center.

2.3.3 Result: a Milky Way–type galaxy

Finally, on the left panel of Fig. 2.17 we show the isodensities (face-on) on the plane for the
time dependent components combined (bar and spiral arms) for our Hydra 2.0 model at the
final time of integration, 6 Gyr in u.t. (i.e. “today”). The Scutum–Centaurus and Perseus
Arms as well as the position of the Sun is indicated. On the right panel, a face-on sketch of our
Milky Way galaxy with the Scutum–Centaurus and Perseus Arms also indicated (the region
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Figure 2.16: Potential–density pairs between ∼ 15 and ∼ 25 kpc. Left panels: isopotentials.
Middle panels: isodensities projected on the center planes. Right panels: isodensities on the
plane.

on the left panel is framed with a solid red line on the right panel). The stellar structure of
the Milky Way seems to be well reproduced by our Hydra 2.0 analytical model.

2.4 Cosmological evolution

In the current MWH 2.0, only the bar and the spiral arms amplitudes are affected by cosmological
evolution. Therefore, those are the only components that can be adiabatically introduced
during a simulation. However, we are working on MWH 3.0: a fully time dependent model,
introducing multiple growth factors to consider cosmological evolution for the rest of the
components (see ongoing work in Chapter 3).

2.4.1 Bar and spiral arms: growth factor η(t)

The bar and the spiral arms can be introduced adiabatically during the first 3 Gyr of a
6 Gyr–long simulation following [22]: The bar and the spiral arms forces are present in the
simulations only for t > 0. These are introduced in the simulations by letting their respective
amplitudes α and A grow by a factor (Dehnen 2000):

η(t) =

(
3

16
ξ5 − 5

8
ξ3 +

15

16
ξ +

1

2

)
, ξ ≡ 2

t

3 Gyrs
− 1,

until, at t = 3 Gyr they reach their final amplitude which is kept constant until the end of the
simulation at t = te ≡ 6 Gyr.



2.4. COSMOLOGICAL EVOLUTION 25

Figure 2.17: Left panel: isodensities on the plane (warm colours indicate high-density regions)
for our time dependent components (bar and spiral arms) combined of our Hydra 2.0 model
at the final time of integration, the Scutum–Centaurus and Perseus Arms are indicated as
well as the position of the Sun with a filled yellow circle. Right panel: a sketch of a face-on
Milky Way (credits: NASA/JPL-Caltech/R. Hurt, SSC/Caltech) with the region enclosed on
the left panel framed in solid red.

Then, at t = 0, we have ξ = −1 and the growth factor η(0) = 0, besides at t = 3, we have
ξ = 1 and the growth factor η(3) = 1. As mentioned before, for t ≥ 3 the amplitudes are
kept constant at the value reached by t = 3. In the MWH model we are going to generalize the
previous expression introducing a new quantity, “atime”:

η(t) =

(
3

16
ξ5 − 5

8
ξ3 +

15

16
ξ +

1

2

)
, ξ ≡ 2

t

atime
− 1,

where atime is measured in u.t. and it is the time–interval that the bar and spiral arms needs
to reach their final amplitudes. For instance, in case we want to reproduce the experiments of
[22], we use atime= 3.068 (due to the unit conversion between Gyr and u.t., see Section C.7
for details). Furthermore, in case the user sets atime= 0, the LP-VIcode interprets that there
is no need of cosmological evolution and the amplitudes of the bar and the spiral arms are
set at their final values from the beginning of the simulation.

In conclusion, in case the user needs to introduce adiabatically the bar and the spiral arms
during the first atime u.t. of a simulation, the amplitudes of the bar, α(t) and that of the
spiral arms, A(t) take the following form: α(t) = α · η(t) and A(t) = A · η(t) where α and A
are the fixed amplitudes of the bar and spiral arms, respectively (Sections 2.2.2.2 and 2.2.3),
and η(t) is the associated growth factor.
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Chapter 3

Ongoing work: MilkyWayHydra 3.0

We are working on two projects, the first one deals with making a fully time dependent MWH

model. The second project is about introducing new components.

1. Time evolution: we are extending the growth factors used to model the bar and the
spiral arms’ cosmological evolution in MWH 2.0, to many other parameters in the MWH 3.0,
in order to make it a fully time dependent model.

2. New components: we are coding a more detailed nuclear region, an ISM disk and,
last but not least, a new option for the DMH.

The more detailed nuclear region presents a subcomponent inside the εnuclear where the dy-
namics is now essentially flat, which would be accomplished by the combination of a Plummer
sphere with a softened point–particle potential describing the naked singularity of the SMBH
at the center. The representation will try to obey the following scales: the first 200− 300 pc
would be dominated by the nuclear bulge where the stellar component would be a nuclear
stellar disk of 1.4× 109 M� mass with a scale height of 45 pc. The compact NSC dominates
the inner 20 − 30 pc region, with a mass of 2.5 − 3 × 107 M� and centered in Sgr A* (the
SMBH, [23, 24, 10]). Finally, the SMBH dominates inside the first 1.25 pc, with a mass of
4.3− 3.3× 106 M� ([14, 11, 8, 9]).

The ISM disk will be introduced as a double exponential density profile such as the thin and
thick disks in order to have a three–component exponential disk made of a two–component
stellar (thin and thick) disk and the aforementioned ISM disk. However, the main difference
with the stellar disks is that the ISM disk will contemplate an exclusion region inside the
corrotation limit, like the spiral arms. Also, the RISM

d will double the Rthin
d . Furthermore,

hISMz = 0.08 kpc.

Finally, the third option for the DMH component will be the Einasto profile.

Our final goal is to update the MWH into a fully time dependent Milky Way–type galaxy
model with the most cited DMH profiles available as options for such theoretical but crucial
component.
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Chapter 4

Final remarks

MilkyWayHydra 2.0 is a ready-to-use realistic Milky Way–type galaxy potential and one of the
three main elements of the LP-VIsuite project (Chapter 1). It has available all of the basic
components of a late–type galaxy (Chapter 2)1: a nuclear region, a peanut–shaped bulge
composed of a bulge spheroid and a bar, the spiral arms, two options for the two–component
(thin and thick) stellar disk (Miyamoto–Nagai profile or exponential profile) and two options
for the dark matter halo (a bi–triaxial extension of the Navarro–Frenk–White profile or a
modified logarithmic profile). The milkywayhydra.pav (Appendix A) includes the potinit

initialization subroutine as well as the acelera and variac subroutines where all the first and
second derivatives are calculated to compute the equations of motions and first variational
equations necessary to obtain the CIs (Appendix B and C). All components can be easily
modified by tunning the corresponding parameters in order to build the target galaxy. Finally,
the MWH 2.0 associated milkywayhydra.pav file is fully functional and validated (Appendix D),
and can be used right out of the box with the latest version (v. 2.0.2) of the LP-VIcode. For
further information about the LP-VIcode, please visit the webpage of the project at:

http://www.fcaglp.unlp.edu.ar/LP-VIcode/

The next version of the MilkyWayHydra (3.0, Chapter 3) is on its way, and it will include more
galactic components as well as time–dependence for all the structure parameters in order to
be able to introduce in a simulation every single component in a more realistic way, likewise
the bar and the spiral arms in the present 2.0 version.

1An early–type galaxy can be also modelled by removing the unnecessary galactic components and adjusting
the remaining parameters.
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Appendix A

The milkywayhydra.pav

The computation of the equations of motion as well as the first variational equations for such
a convoluted multi-component potential as the present MWH is a very difficult task: being a
non–automatic process, we need to check and recheck at every step. Indeed, all the expres-
sions were carefully calculated by hand and further on, every one of them were also checked
with an algebraic manipulator. It is straightforward to realise that such complex procedure
has multiple sources for mistakes that might be extremely difficult to identify. Just recently,
however, we were able to apply the SMART code to our potential, the automatic differenti-
ation pre-processing slave program of the LP-VIsuite which was used to compute all the
equations (motion and first variationals) from the scratch once again. Then, a fairly well
coincidence between the results using both procedures would imply a solid validation test for
our milkywayhydra.pav file.

In the appendix B we present the derivation of all the equations of motion and first variational
equations for the MWH 2.0, that are necessary to build the milkywayhydra.pav.

In the appendix C we describe the milkywayhydra.pav.

In the appendix D we present the results of comparing the two flavours of the milkywayhydra.pav
on a variety of experiments: the original, a.k.a. pre–SMART version and the automatic, a.k.a.
SMART version.
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Appendix B

Construction

In the present appendix we are going to present all the expressions involved in the calculation
of the equations of motion and first variational equations included in the milkywayhydra.pav.
Every single expression presented here was calculated by hand and checked with an algebraic
manipulator.

B.1 First and second derivatives

B.1.1 The nuclear region

Being the potential:

Φnuclear = − GMnuclear√
x2 + y2 + z2 + ε2nuclear

, (B.1)

and introducing the quantities:
Rnuclear =

√
x2 + y2 + z2 + ε2nuclear,

∂Rnuclear
∂xi

= xi
Rnuclear

,

we can rewrite the potential associated with the nuclear region (Eq. B.1), and the correspond-
ing derivatives like:

Φnuclear = −GMnuclear
Rnuclear

,

∂Φnuclear
∂xi

= −Φnuclear
Rnuclear

∂Rnuclear
∂xi

,

∂
∂xi

(
∂Φnuclear

∂xj

)
= Φnuclear

R2
nuclear

[
3
(
∂Rnuclear

∂xi

)(
∂Rnuclear

∂xj

)
− δij

]
,

with x1 = x, x2 = y and x3 = z.

37



38 APPENDIX B. CONSTRUCTION

B.1.2 The peanut–shaped bulge

B.1.2.1 The bulge spheroid

Being the potential:

Φbulge = −
GMbulge√

x2 + y2 + z2 + εbulge
, (B.2)

and introducing the quantities:


Rbulge =

√
x2 + y2 + z2 + εbulge,

∂Rbulge
∂xi

= xi
Rbulge−εbulge ,

we can rewrite the potential associated with the bulge (Eq. B.2), and the corresponding
derivatives like:



Φbulge = −GMbulge

Rbulge
,

∂Φbulge
∂xi

= −Φbulge
Rbulge

∂Rbulge
∂xi

,

∂
∂xi

(
∂Φbulge
∂xj

)
=

Φbulge
R2
bulge

(
∂Rbulge
∂xi

)(
∂Rbulge
∂xj

)(
3 +

εbulge
Rbulge−εbulge

)
− δij

Φbulge
Rbulge(Rbulge−εbulge) ,

with x1 = x, x2 = y and x3 = z.

B.1.2.2 The bar

Being the potential:

Φbar(R,φ, z, t) = α
v2

0

3

(
R0

Rb

)3

U(r)
R2

r2
cos(γb), (B.3)

first we identify the hereinafter “first level variables”, and calculate their first and second
derivatives:
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First level variables→



R(x1, x2) (≥ 0) =
√
x2

1 + x2
2;

φ(x1, x2) (∈ [−π, π]) =



arctan
(
x2
x1

)
x1 > 0,

arctan
(
x2
x1

)
+ π x1 < 0 and x2 ≥ 0,

arctan
(
x2
x1

)
− π x1 < 0 and x2 < 0,

π
2 x1 = 0 and x2 > 0,

−π
2 x1 = 0 and x2 < 0,

not defined x1 = x2 = 0;

x3 = x3.
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First derivatives→



∂R
∂xi

= xi
R with i = 1, 2,

∂φ
∂x1

=



−x2/x2
1

(x2/x1)2+1
x1 6= 0,

0 x1 = 0 and x2 6= 0,

not defined x1 = x2 = 0,

∂φ
∂x2

=



1/x1

(x2/x1)2+1
x1 6= 0,

0 x1 = 0 and x2 6= 0,

not defined x1 = x2 = 0.
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Second derivatives→



∂2R
∂xi∂xj

= 1
R

[
δij −

(
∂R
∂xi

∂R
∂xj

)]
with i, j = 1, 2;

∂2φ
∂x2

1
=



2x1
x2

(
∂φ
∂x1

)2
x1 6= 0,

0 x1 = 0 and x2 6= 0,

not defined x1 = x2 = 0,

∂2φ
∂x2

2
=



−2x2
x1

(
∂φ
∂x2

)2
x1 6= 0,

0 x1 = 0 and x2 6= 0,

not defined x1 = x2 = 0,

∂2φ
∂x1∂x2

=



− 1
x1

(
∂φ
∂x2

) [
1 + 2x2

∂φ
∂x1

]
x1 6= 0,

0 x1 = 0 and x2 6= 0,

not defined x1 = x2 = 0.

Second, we build our first–level group of composite quantities and compute their first and
second derivatives:

Composite constants→

{
CA =

v2
0
3 · R

3
0.
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Composite variables→



r(R, x3) (≥ 0) =
√
R2 + x2

3;

γb(φ; t)) = 2 (φ− φb − Ωb · t) ;

U(r) =


−(r/Rb)

−3 for r ≥ Rb,

(r/Rb)
3 − 2 for r < Rb.

First derivatives→



∂r
∂R = R

r ,

∂r
∂xi

= ∂r
∂R

∂R
∂xi

with i = 1, 2,

∂r
∂x3

= x3
r ;

∂γb
∂φ = 2,

∂γb
∂xi

= ∂γb
∂φ

∂φ
∂xi

with i = 1, 2,

∂γb
∂x3

= 0;

dU(r)
d r =


−3
rU(r) for r ≥ Rb,

3
r (U(r) + 2) for r < Rb,

∂U(r)
∂xi

= dU(r)
d r

∂r
∂xi

with i = 1, 2, 3.
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Second derivatives→



∂2r
∂R2 = 1

r

[
1−

(
∂r
∂R

)2]
,

∂2r
∂xi∂xj

= ∂2r
∂R2

∂R
∂xi

∂R
∂xj

+ ∂r
∂R

∂2R
∂xi∂xj

with i, j = 1, 2,

∂2r
∂x2

3
= 1

r

[
1−

(
∂r
∂x3

)2
]
,

∂2r
∂x3∂R

= −1
r
∂r
∂R

∂r
∂x3

,

∂2r
∂x3∂xi

= ∂2r
∂x3∂R

∂R
∂xi

with i = 1, 2;

∂2γb
∂xi∂xj

= ∂γb
∂φ

∂2φ
∂xi∂xj

with i, j = 1, 2;

d2 U(r)
d r2 =


+ 3
r2U(r)− 3

r
dU(r)
d r for r ≥ Rb,

− 3
r2 (U(r) + 2) + 3

r
dU(r)
d r for r < Rb,

∂2U(r)
∂xi∂xj

= d2 U(r)
d r2

∂r
∂xi

∂r
∂xj

+ dU(r)
d r

∂2r
∂xi∂xj

with i, j = 1, 2,

∂2U(r)
∂x2

3
= 1

r
dU(r)
d r

[
1−

(
∂r
∂x3

)2
]

+ d2 U(r)
d r2

(
∂r
∂x3

)2
,

∂2U(r)
∂x3∂xi

= d2 U(r)
d r2

∂r
∂x3

∂r
∂xi

+ dU(r)
d r

∂2r
∂x3∂xi

with i = 1, 2.

Third, we build our second–level group of composite quantities and, again, compute their first
and second derivatives:

Composite variables→


OCA1(R, r) =

(
R
r

)2
;

OCA2(γb) = cos(γb),

where OCA1 is a function of R (first level variable) as well as r(R, x3) (composite variable)
and not simply a function of the first level variable pair (R, x3). This is our election to
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preserve recursiveness for programming purposes1.

First derivatives→



∂OCA1
∂r = −2

r

(
∂r
∂R

)2
,

∂OCA1
∂R = 2

r
∂r
∂R ,

∂OCA1
∂xi

=
(
∂OCA1
∂R + ∂OCA1

∂r
∂r
∂R

)
∂R
∂xi

with i = 1, 2,

∂OCA1
∂x3

= ∂OCA1
∂r

∂r
∂x3

;

dOCA2
d γb

= − sin(γb),

∂OCA2
∂xi

= dOCA2
d γb

∂γb
∂xi

with i = 1, 2,

∂OCA2
∂x3

= 0.

1In order to preserve the recursive chain when it is possible, second–level group of composite quantities
should depend on first–level group of composite quantities and first level quantities, and first–level group of
composite quantities should depend only on first level quantities.
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Second derivatives→



∂2OCA1
∂r2 = 2

r

(
OCA1
r − ∂OCA1

∂r

)
,

∂2OCA1
∂R2 = 2

r2 ,

∂2OCA1
∂r∂R = − 4

r2
∂r
∂R ,

∂2OCA1
∂xi∂xj

= ∂2OCA1
∂R2

∂R
∂xi

∂R
∂xj

+ ∂2OCA1
∂r2

∂r
∂xi

∂r
∂xj

+

+∂2OCA1
∂r∂R

(
∂R
∂xi

∂r
∂xj

+ ∂r
∂xi

∂R
∂xj

)
+ ∂OCA1

∂R
∂2R
∂xi∂xj

+

+∂OCA1
∂r

∂2r
∂xi∂xj

with i, j = 1, 2,

∂2OCA1

∂x2
3

= ∂2OCA1
∂r2

(
∂r
∂x3

)2
+ ∂OCA1

∂r
∂2r
∂x2

3
,

∂2OCA1
∂x3∂xi

= ∂2OCA1
∂r2

∂r
∂x3

∂r
∂xi

+ ∂2OCA1
∂r∂R

∂r
∂x3

∂R
∂xi

+ ∂OCA1
∂r

∂2r
∂x3∂xi

with i = 1, 2;

d2 OCA2
d2 γb

= −OCA2,

∂2OCA2
∂xi∂xj

= d2 OCA2
d2 γb

∂γb
∂xi

∂γb
∂xj

+ dOCA2
d γb

∂2γb
∂xi∂xj

with i, j = 1, 2.

We can rewrite the potential associated with the bar (Eq. B.3), and the corresponding deriva-
tives like:

Potential→

{
Φbar = α · CA

R3
b
· U ·OCA1OCA2.
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First derivatives→



∂Φbar
∂U = α · CA

R3
b
·OCA1OCA2;

∂Φbar
∂OCA1

= α · CA
R3
b
· U ·OCA2,

∂Φbar
∂OCA2

= α · CA
R3
b
· U ·OCA1;

∂Φbar
∂xi

= ∂Φbar
∂U

∂U
∂xi

+ ∂Φbar
∂OCA1

∂OCA1
∂xi

+ ∂Φbar
∂OCA2

∂OCA2
∂xi

with i = 1, 2,

∂Φbar
∂x3

= ∂Φbar
∂U

∂U
∂x3

+ ∂Φbar
∂OCA1

∂OCA1
∂x3

.
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Second derivatives→



∂2Φbar
∂U∂OCA1

= α · CA
R3
b
·OCA2,

∂2Φbar
∂U∂OCA2

= α · CA
R3
b
·OCA1;

∂2Φbar
∂OCA1∂OCA2

= α · CA
R3
b
· U ;

∂2Φbar
∂xi∂xj

= ∂2Φbar
∂U∂OCA1

(
∂U
∂xi

∂OCA1
∂xj

+ ∂U
∂xj

∂OCA1
∂xi

)
+

+ ∂2Φbar
∂U∂OCA2

(
∂U
∂xi

∂OCA2
∂xj

+ ∂U
∂xj

∂OCA2
∂xi

)
+

+ ∂2Φbar
∂OCA1∂OCA2

(
∂OCA1
∂xi

∂OCA2
∂xj

+ ∂OCA1
∂xj

∂OCA2
∂xi

)
+

+∂Φbar
∂U

∂2U
∂xi∂xj

+ ∂Φbar
∂OCA1

∂2OCA1
∂xi∂xj

+ ∂Φbar
∂OCA2

∂2OCA2
∂xi∂xj

with i, j = 1, 2,

∂2Φbar
∂x2

3
= ∂2Φbar

∂U∂OCA1

(
2 ∂U
∂x3

∂OCA1
∂x3

)
+ ∂Φbar

∂U
∂2U
∂x2

3
+ ∂Φbar

∂OCA1

∂2OCA1

∂x2
3

,

∂2Φbar
∂x3∂xi

= ∂2Φbar
∂U∂OCA1

(
∂U
∂x3

∂OCA1
∂xi

+ ∂U
∂xi

∂OCA1
∂x3

)
+

+ ∂2Φbar
∂U∂OCA2

∂U
∂x3

∂OCA2
∂xi

+ ∂2Φbar
∂OCA1∂OCA2

∂OCA1
∂x3

∂OCA2
∂xi

+

+∂Φbar
∂U

∂2U
∂x3∂xi

+ ∂Φbar
∂OCA1

∂2OCA1
∂x3∂xi

with i = 1, 2,

with x1 = x, x2 = y y x3 = z.

B.1.3 The spiral arms

Being the potential:

Φspiral(R,φ, z, t) = − A

RsKD
e
− (R−Rs)

Rsd cos(γs)

[
sech

(
Kz

β

)]β
, (B.4)

where the first level variables are the same as in the bar potential (Section B.1.2.2) because
both are written in cylindrical coordinates (and they need to be transformed to cartesian
coordinates as the rest of the potential components). Then, we start with our first–level group
of composite quantities. We use the functional form of the expressions in the generalized N–
armed potential (Section 2.2.3) ir order to cover the general case. For instance, a two–armed
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spiral pattern as the one used in the default milkywayhydra.pav is achieved by setting the
values to n = 1 and N = 2.

Composite variables→


Kn(R)→ K(R) = nN

R sin(p) ,

γsn(R,φ, t)→ γs(R,φ; t) = nN
[
φ− φs − Ωst− ln(R/Rs)

tan(p)

]
.

First derivatives→



dK
dR = −K

R ,

∂K
∂xi

= dK
dR

∂R
∂xi

with i = 1, 2;

∂γs
∂R = −nN

tan(p)·R ,

∂γs
∂φ = nN,

∂γs
∂xi

= ∂γs
∂R

∂R
∂xi

+ ∂γs
∂φ

∂φ
∂xi

with i = 1, 2.

Second derivatives→



d2 K
dR2 = −2dK

dR
1
R ,

∂2K
∂xi∂xj

= d2 K
dR2

(
∂R
∂xi

∂R
∂xj

)
+ dK

dR
∂2R
∂xi∂xj

with i, j = 1, 2;

∂2γs
∂R2 = −∂γs

∂R
1
R

∂2γs
∂xi∂xj

= ∂γs
∂R

∂2R
∂xi∂xj

+ ∂2γs
∂R2

(
∂R
∂xi

∂R
∂xj

)
+ ∂γs

∂φ
∂2φ

∂xi∂xj
with i, j = 1, 2.

Notice that we try to write the second derivatives as functions of the first derivatives whenever
possible.

From Eq. B.4 we see that variables β and D depend only on the composite variable K, thus
both former variables are in a second–level group in the recursive chain. Therefore:
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Composite variables→


β(K) = K · hs [1 + 0.4K · hs] ,

D(K) = 1+K·hs+0.3[K·hs]2
1+0.3K·hs .

First derivatives→



dβ
dK = hs + 0.8K · h2

s,

∂β
∂xi

= dβ
dK

∂K
∂xi

with i = 1, 2;

dD
dK =

(hs+0.6K·h2
s)(1+0.3K·hs)−[1+K·hs+0.3(K·hs)2](0.3hs)

(1+0.3K·hs)2 ,

∂D
∂xi

= dD
dK

∂K
∂xi

with i = 1, 2.

Second derivatives→



d2 β
dK2 = 0.8 · h2

s,

∂2β
∂xi∂xj

= d2 β
dK2

(
∂K
∂xi

∂K
∂xj

)
+ d β

dK
∂2K
∂xi∂xj

with i, j = 1, 2;

d2 D
dK2 = 0.6·h2

s
(1+0.3K·hs) −

0.6·h2
s+0.18K·h3

s

(1+0.3K·hs)2 + 0.18·h2
s

(1+0.3K·hs)3 ,

∂2D
∂xi∂xj

= d2 D
dK2

(
∂K
∂xi

∂K
∂xj

)
+ dD

dK
∂2K
∂xi∂xj

with i, j = 1, 2.

Finally, we introduce a third–level group of composite quantities:
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Composite variables→



OCAB1(K,D) = 1
Rs·D·K ;

OCAB2(γs) = cos(γs);

OCAB3(K, β, x3) =


sechβ

(
K·x3
β

)
if
∣∣∣K·x3

β

∣∣∣ < 20,

2βe
−β

∣∣∣K·x3
β

∣∣∣
if
∣∣∣K·x3

β

∣∣∣ ≥ 20,

OCAB4(R) = e
− (R−Rs)

Rsd .

Also notice that we deal differently with the expression OCAB3(K, β, x3) due to its depen-

dence on function sechβ
(

K·x3
β

)
. The FORTRAN function in such case is the COSH and for

many situations we found a divergent behaviour. Consequently, the algorithm turns to be

unstable. In order to fix this, we consider the following line of thinking: ln
[
sechβ

(
K·x3
β

)]
=

ln
[
cosh−β

(
K·x3
β

)]
= −β ln

[
cosh

(
K·x3
β

)]
. Since when

∣∣∣K·x3
β

∣∣∣ = 20, the hyperbolic function

takes the value: 1
2

(
e20 + e−20

)
∼ 1

2

(
4× 108 + 2× 10−9

)
where the negative exponential does

not affect any significative number given by the positive exponential part and thus, when the
argument of the hyperbolic function has an absolute value ≥ 20, the latter can be simplified
to a single exponential function without loosing any numerical precision in the computation.

In that case, −β ln
[
cosh

(
K·x3
β

)]
→ −β ln

[
1
2e

∣∣∣K·x3
β

∣∣∣]
= −β

(∣∣∣K·x3
β

∣∣∣− ln(2)
)

. Then, all sech(·)

are treated in that way, independently of its exponent.
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First derivatives→



dOCAB1
dK = −OCAB1

(
1
D
dD
dK + 1

K

)
,

∂OCAB1
∂xi

= dOCAB1
dK

∂K
∂xi

with i = 1, 2;

dOCAB2
d γs

= − sin(γs),

∂OCAB2
∂xi

= dOCAB2
d γs

∂γs
∂xi

with i = 1, 2;

∂OCAB3
∂K =



OCAB3 ·
{
d β
dK ln

[
sech

(
K·x3
β

)]
−

−β · tanh
(

K·x3
β

) [
x3
β −

K·x3
β2

d β
dK

]}
if
∣∣∣K·x3

β

∣∣∣ < 20,

OCAB3 ·
{
d β
dK

[
ln(2)−

∣∣∣K·x3
β

∣∣∣]−
−β · tanh

(
K·x3
β

) [
x3
β −

K·x3
β2

d β
dK

]}
if
∣∣∣K·x3

β

∣∣∣ ≥ 20,

∂OCAB3
∂xi

= ∂OCAB3
∂K

∂K
∂xi

with i = 1, 2,

∂OCAB3
∂x3

= −OCAB3 ·K tanh
(

K·x3
β

)
;

dOCAB4
dR = −OCAB4

Rsd
,

∂OCAB4
∂xi

= dOCAB4
dR

∂R
∂xi

with i = 1, 2.

The reader may notice that in the first derivatives of third–level group composite variables,
it seems to be that ∂OCAB1

∂D and ∂OCAB3
∂β are missing in order to have a complete recursive

structure. However, D as well as β (second–level group) are functions of K and the latter also
appears explicitly in the expressions (and not only through D or β). Then, we choose to use
dOCAB1

dK and ∂OCAB3
∂K alone.
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Second derivatives→



d2 OCAB1
dK2 = −

(
1
D
dD
dK + 1

K

) (
dOCAB1

dK

)
+

+OCAB1

[
1

D2

(
dD
dK

)2 − 1
D
d2 D
dK2 + 1

K2

]
,

∂2OCAB1
∂xi∂xj

= d2 OCAB1
dK2

(
∂K
∂xi

∂K
∂xj

)
+ dOCAB1

dK
∂2K
∂xi∂xj

with i, j = 1, 2;

d2 OCAB2
d γ2

s
= − cos(γs),

∂2OCAB2
∂xi∂xj

= d2 OCAB2
d γ2

s

(
∂γs
∂xi

∂γs
∂xj

)
+ dOCAB2

d γs
∂2γs
∂xi∂xj

with i, j = 1, 2;

∂2OCAB3
∂K2 =



{
d β
dK ln

[
sech

(
K·x3
β

)]
− β · tanh

(
K·x3
β

) [
x3
β −

K·x3
β2

d β
dK

]}
·

·
(
∂OCAB3

∂K

)
+ OCAB3

{
∂2β
∂K2

[
ln
(

sech
(

K·x3
β

))
+

+ tanh
(

K·x3
β

)
K·x3
β

]
+
(
∂β
∂K

)2 [
−sech2

(
K·x3
β

)
K2·x2

3
β3

]
+

+ ∂β
∂K

[
2sech2

(
K·x3
β

)
K·x2

3
β2

]
− sech2

(
K·x3
β

)
x2

3
β

}
if
∣∣∣K·x3

β

∣∣∣ < 20,

{
d β
dK

[
ln(2)−

∣∣∣K·x3
β

∣∣∣]− β · tanh
(

K·x3
β

) [
x3
β −

K·x3
β2

d β
dK

]}
·

·
(
∂OCAB3

∂K

)
+ OCAB3

{
∂2β
∂K2

[
ln(2)−

∣∣∣K·x3
β

∣∣∣+
+ tanh

(
K·x3
β

)
K·x3
β

]
+
(
∂β
∂K

)2
[
−4e

−2
∣∣∣K·x3

β

∣∣∣ K2·x2
3

β3

]
+

+ ∂β
∂K

[
8e
−2

∣∣∣K·x3
β

∣∣∣ K·x2
3

β2

]
− 4e

−2
∣∣∣K·x3

β

∣∣∣ x2
3
β

}
if
∣∣∣K·x3

β

∣∣∣ ≥ 20,

∂2OCAB3
∂x3∂K =



{
d β
dK ln

[
sech

(
K·x3
β

)]
− β · tanh

(
K·x3
β

) [
x3
β −

K·x3
β2

d β
dK

]}
·

·
(
∂OCAB3
∂x3

)
+ OCAB3

[
sech2

(
K·x3
β

)(
K2·x3
β2

∂β
∂K −

K·x3
β

)
−

− tanh
(

K·x3
β

)]
if
∣∣∣K·x3

β

∣∣∣ < 20,

{
d β
dK

[
ln(2)−

∣∣∣K·x3
β

∣∣∣]− β · tanh
(

K·x3
β

) [
x3
β −

K·x3
β2

d β
dK

]}
·

·
(
∂OCAB3
∂x3

)
+ OCAB3

[
4e
−2

∣∣∣K·x3
β

∣∣∣ (K2·x3
β2

∂β
∂K −

K·x3
β

)
−

− tanh
(

K·x3
β

)]
if
∣∣∣K·x3

β

∣∣∣ ≥ 20,
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Second derivatives (cont.)→



∂2OCAB3
∂xi∂xj

= ∂2OCAB3
∂K2

(
∂K
∂xi

∂K
∂xj

)
+ ∂OCAB3

∂K
∂2K
∂xi∂xj

with i, j = 1, 2;

∂2OCAB3
∂x3∂xi

= ∂2OCAB3
∂x3∂K

∂K
∂xi

with i = 1, 2;

∂2OCAB3

∂x2
3

=



−K tanh
(

K·x3
β

)(
∂OCAB3
∂x3

)
+

+OCAB3 · K
β sech2

(
K·x3
β

)
if
∣∣∣K·x3

β

∣∣∣ < 20,

−K tanh
(

K·x3
β

)(
∂OCAB3
∂x3

)
+

+OCAB3 · K
β

(
4e
−2

∣∣∣K·x3
β

∣∣∣)
if
∣∣∣K·x3

β

∣∣∣ ≥ 20;

d2 OCAB4
dR2 = OCAB4

R2
sd

,

∂2OCAB4
∂xi∂xj

= d2 OCAB4
dR2

∂R
∂xi

∂R
∂xj
− 1

Rsd
OCAB4

∂2R
∂xi∂xj

with i, j = 1, 2.

Furthermore, the following expressions: ∂2OCAB3
∂K2 , ∂

2OCAB3
∂x3∂K and ∂2OCAB3

∂x2
3

are written in a less

recursive fashion in order to avoid non–essential singularities due to the OCAB3 term. Then,
we can rewrite the potential associated with the spiral arms (Eq. B.4), and the corresponding
derivatives like:

Potential→

{
Φspiral = −A ·OCAB1OCAB2OCAB3OCAB4.
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First derivatives→



∂Φspiral
∂OCAB1

= −A ·OCAB2OCAB3OCAB4,

∂Φspiral
∂OCAB2

= −A ·OCAB1OCAB3OCAB4,

∂Φspiral
∂OCAB3

= −A ·OCAB1OCAB2OCAB4,

∂Φspiral
∂OCAB4

= −A ·OCAB1OCAB2OCAB3;

∂Φspiral
∂xi

=
∂Φspiral
∂OCAB1

∂OCAB1
∂xi

+
∂Φspiral
∂OCAB2

∂OCAB2
∂xi

+
∂Φspiral
∂OCAB3

∂OCAB3
∂xi

+

+
∂Φspiral
∂OCAB4

∂OCAB4
∂xi

with i = 1, 2,

∂Φspiral
∂x3

=
∂Φspiral
∂OCAB3

∂OCAB3
∂x3

.
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Second derivatives→



∂2Φspiral
∂OCAB1∂OCAB2

= −A ·OCAB3OCAB4,

∂2Φspiral
∂OCAB1∂OCAB3

= −A ·OCAB2OCAB4,

∂2Φspiral
∂OCAB1∂OCAB4

= −A ·OCAB2OCAB3,

∂2Φspiral
∂OCAB2∂OCAB3

= −A ·OCAB1OCAB4,

∂2Φspiral
∂OCAB2∂OCAB4

= −A ·OCAB1OCAB3,

∂2Φspiral
∂OCAB3∂OCAB4

= −A ·OCAB1OCAB2;

∂2Φspiral
∂xi∂xj

=
∂2Φspiral

∂OCAB1∂OCAB2

(
∂OCAB1
∂xi

∂OCAB2
∂xj

+ ∂OCAB1
∂xj

∂OCAB2
∂xi

)
+

+
∂2Φspiral

∂OCAB1∂OCAB3

(
∂OCAB1
∂xi

∂OCAB3
∂xj

+ ∂OCAB1
∂xj

∂OCAB3
∂xi

)
+

+
∂2Φspiral

∂OCAB1∂OCAB4

(
∂OCAB1
∂xi

∂OCAB4
∂xj

+ ∂OCAB1
∂xj

∂OCAB4
∂xi

)
+

+
∂2Φspiral

∂OCAB2∂OCAB3

(
∂OCAB2
∂xi

∂OCAB3
∂xj

+ ∂OCAB2
∂xj

∂OCAB3
∂xi

)
+

+
∂2Φspiral

∂OCAB2∂OCAB4

(
∂OCAB2
∂xi

∂OCAB4
∂xj

+ ∂OCAB2
∂xj

∂OCAB4
∂xi

)
+

+
∂2Φspiral

∂OCAB3∂OCAB4

(
∂OCAB3
∂xi

∂OCAB4
∂xj

+ ∂OCAB3
∂xj

∂OCAB4
∂xi

)
+

+
∂Φspiral
∂OCAB1

∂2OCAB1
∂xi∂xj

+
∂Φspiral
∂OCAB2

∂2OCAB2
∂xi∂xj

+

+
∂Φspiral
∂OCAB3

∂2OCAB3
∂xi∂xj

+
∂Φspiral
∂OCAB4

∂2OCAB4
∂xi∂xj

with i, j = 1, 2,

∂2Φspiral
∂x3∂xi

=
∂2Φspiral

∂OCAB1∂OCAB3

∂OCAB3
∂x3

∂OCAB1
∂xi

+
∂2Φspiral

∂OCAB2∂OCAB3

∂OCAB3
∂x3

∂OCAB2
∂xi

+

+
∂2Φspiral

∂OCAB3∂OCAB4

∂OCAB3
∂x3

∂OCAB4
∂xi

+
∂Φspiral
∂OCAB3

∂2OCAB3
∂x3∂xi

with i = 1, 2,

∂2Φspiral
∂x2

3
=

∂Φspiral
∂OCAB3

∂2OCAB3

∂x2
3

,
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with x1 = x, x2 = y and x3 = z.

B.1.4 The disk

Being the potential of one MN profile:

Φdisk = − GMdisk√
x2 + y2 +

(
εs +

√
z2 + ε2h

)2
, (B.5)

and introducing the quantities:



Rdisk:1 = εs +
√
z2 + ε2h,

Rdisk:2 =
√
x2 + y2 + R2

disk:1,

∂Rdisk:2
∂xi

= xi
Rdisk:2

,

∂Rdisk:2
∂x3

= x3Rdisk:1
Rdisk:2(Rdisk:1−εs) ,

we can rewrite the potential associated with the disk (Eq. B.5), and the corresponding deriva-
tives like:



Φdisk = −GMdisk
Rdisk:2

,

∂Φdisk
∂xi

= − Φdisk
Rdisk:2

∂Rdisk:2
∂xi

,

∂
∂xi

(
∂Φdisk
∂xj

)
=

{
− 3

Rdisk:2

∂Rdisk:2
∂xi

+
[

xi
Rdisk:1−εs

(
1

Rdisk:1
− 1

Rdisk:1−εs

)
δ3i + 1

xi

]
δij

}
∂Φdisk
∂xj

,

with x1 = x, x2 = y y x3 = z.

However, the second derivatives have a non–essential singularity (indicated in red). Therefore,
next we expand and rewrite such expressions to show in this simple case2 how we deal with
these kind of singularities:

2The reader may remember the non–essential singularities mentioned in the spiral arms potential (Sec-
tion B.1.3), but their treatment is much longer to describe so we decided to show the general treatment
applied to this sort of singularities only in this case.
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∂
∂xi

(
∂Φdisk
∂xj

)
= − 3

Rdisk:2

∂Rdisk:2
∂xi

∂Φdisk
∂xj

si i 6= j

∂2Φdisk
∂x2
i

=
(
− 3

Rdisk:2

∂Rdisk:2
∂xi

)
∂Φdisk
∂xi

− Φdisk
R2
disk:2

si i = j 6= 3

∂2Φdisk
∂x2

3
=

{
− 3

Rdisk:2

∂Rdisk:2
∂x3

+
[

x3
Rdisk:1−εs

(
1

Rdisk:1
− 1

Rdisk:1−εs

)]}
∂Φdisk
∂x3

− Φdisk
R2
disk:2

Rdisk:1
Rdisk:1−εs

We presented here the first and second derivatives of one MN profile, but in order to build an
exponential profile, we consider the sum of three MN profiles (see Section 2.2.4.2 for further
details). However, due to the linearity of first and second derivatives as the user is perfectly
aware of, the derivatives of three MN disks is just the sum of the derivatives of each MN disk,
and there is no need to compute more derivatives, just copy and paste as many times as MN
disks the model has.

B.1.5 The dark matter halo

B.1.5.1 Option (1): a bi–triaxial extension of the NFW DMH

Being the potential:

Φdmh1 = − GM200[
ln(1 + cnfw)− cnfw

1+cnfw

]
r′

ln

[
1 +

r′

rs

]
, (B.6)

and introducing the quantities:
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Ad = GM200

ln(1+cnfw)− cnfw
1+cnfw

,

B = rs + roe,

rie =
√

x2

a2 + y2

b2
+ z2

c2
,

roe =
√

x2

a′2 + y2

b′2 + z2

c′2 ,

C = rie + rs,

r′ = Brie
C ,

D =
(

B−r′
C

)
,

∂roe
∂xi

= xi
d′2i roe

,

∂rie
∂xi

= xi
d2
i rie

,

∂r′

∂xi
= rie

C
∂roe
∂xi

+ D∂rie
∂xi

,

Ei = ∂rie
∂xi

1
C

(
1− rie

C

)
,

Fi = 1
C

(
∂roe
∂xi
− ∂r′

∂xi
− ∂rie

∂xi
D
)
,

∂2roe
∂x2
i

= 1
roe

[
1
d′2i
−
(
∂roe
∂xi

)2
]
,

∂2roe
∂xi∂xj

= − 1
roe

∂roe
∂xi

∂roe
∂xj

,

∂2rie
∂x2
i

= 1
rie

[
1
d2
i
−
(
∂rie
∂xi

)2
]
,

∂2rie
∂xi∂xj

= − 1
rie

∂rie
∂xi

∂rie
∂xj

,

∂2r′

∂xi∂xj
= ∂2roe

∂xi∂xj
rie
C + ∂roe

∂xi
Ej + ∂2rE

∂xi∂xj
D + ∂rie

∂xi
Fj ,

we can rewrite the potential associated with the DMH1 (Eq. B.6), and the corresponding
derivatives like:
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Φdmh1 = −Ad
r′ ln

[
1 + r′

rs

]
,

∂Φdmh1
∂r′ = −

(
Φdmh1
r′ + Ad

r′(rs+r′)

)
,

∂Φdmh1
∂xi

= ∂Φdmh1
∂r′

∂r′

∂xi
,

∂2Φdmh1
∂r′2 = Φdmh1

r′2 − 1
r′
∂Φdmh1
∂r′ + Ad(rs+2r′)

r′2(rs+r′)
2 ,

∂2Φdmh1
∂xi∂r′

= ∂2Φdmh1
∂r′2

∂r′

∂xi
,

∂2Φdmh1
∂xi∂xj

= ∂2Φdmh1
∂xi∂r′

∂r′

∂xj
+ ∂Φdmh1

∂r′
∂2r′

∂xi∂xj
,

with x1 = x, x2 = y and x3 = z and d1 = a, d2 = b, d3 = c, d′1 = a′, d′2 = b′ and d′3 = c′ .

B.1.5.2 Option (2): a modified logarithmic DMH

Being the potential:

Φdmh2 = v2
halo ln[(r?)2 + d2),

and introducing the quantities:
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rie =
√
x2 + y2 + z2

q2
z
,

roe =
√

Wx2 + Vy2 + Uxy + z2

q2
3
,

T = rie
ra+rie

,

r? = (ra + roe)T,

Q = r? ra
rie(ra+rie)

,

∂rie
∂xi

= xi
q2
xi
rie
,

∂roe
∂xi

=
[(

2Wx+Uy
2

)
δ1i +

(
2Vy+Ux

2

)
δ2i + z

q2
3
δ3i

]
1
roe
,

∂r?

∂xi
= T∂roe

∂xi
+ Q∂rie

∂xi
,

∂T
∂xi

= T ra
(ra+rie)rie

∂rie
∂xi

,

∂Q
∂xi

= T ra
(ra+rie)rie

∂roe
∂xi
−Q 2

ra+rie
∂rie
∂xi

,

∂2rie
∂xi∂xj

=
(
δij
q2
xi

− ∂rie
∂xi

∂rie
∂xj

)
1
rie
,

∂2roe
∂xi∂xj

=
[(

Wδ1i + Vδ2i + δ3i
q2
3

)
δij + U

2 (δi1δ2j + δi2δ1j)− ∂roe
∂xi

∂roe
∂xj

]
1
roe
,

∂2r?

∂xi∂xj
= T ∂2roe

∂xi∂xj
+ ∂roe

∂xj
∂T
∂xi

+ Q ∂2rie
∂xi∂xj

+ ∂rie
∂xj

∂Q
∂xi
,

we can rewrite the corresponding derivatives like:
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∂Φdmh2
∂r? =

2v2
halo

(r?)2+d2 r
?,

∂Φdmh2
∂xi

= ∂Φdmh2
∂r?

∂r?

∂xi
,

∂2Φdmh2
∂r?2

=
2v2
halo[d

2−(r?)2]

[(r?)2+d2]2
,

∂2Φdmh2
∂xi∂r?

= ∂2Φdmh2
∂r?2

∂r?

∂xi
,

∂2Φdmh2
∂xi∂xj

= ∂2Φdmh2
∂xi∂r?

∂r?

∂xj
+ ∂Φdmh2

∂r?
∂2r?

∂xi∂xj
,

with x1 = x, x2 = y and x3 = z and qx = 1, qy = 1 and qz.

Now that we have calculated all the first and second derivatives of every galactic component, in
next section we proceed with the construction of the equations of motion and first variational
equations in order to compute the CIs.

B.2 Equations of motion

Finally, we have the full MWH 2.0 potential:

ΦMWH2.0 = Φnuclear + Φbulge + Φbar + Φspiral + Φdisk + Φdmh

where Φdisk = ΦMN
disk

3 or Φdisk = Φthin
disk + Φthick

disk
4 and Φdmh can be either Φdmh1 or Φdmh2, and

given also that the equations of motion take the following general form:

d~ρ

dt
= ~f (~ρ; t) with :



~ρ (0) = ~ρ0,

~ρ = (x1, x2, x3, px1 , px2 , px3) ,

~f =
(
px1 , px2 , px3 ,− ∂Φ

∂x1
,− ∂Φ

∂x2
,− ∂Φ

∂x3

)
,

where ~px = ~̇x, we can compute the equations of motion for our particular problem, yielding:

3Only one MN disk is considered to resemble a MN profile.
4Each of them is the sum of 3 MN disks to resemble an exponential profile: Φ

thin/thick
disk = Φ

thin/thick
MN:1 +

Φ
thin/thick
MN:2 + Φ

thin/thick
MN:3 .
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~̇x = ~px →



ẋ1 = px1 ,

ẋ2 = px2 ,

ẋ3 = px3 ,

~̈x = −~∇ΦMWH2.0

with ~∇ΦMWH2.0 the corresponding gradient of the full potential MWH 2.0. The latter vector
identity can be further expanded into:

~̈x = −~∇ΦMWH2.0 →



ẍ1 = −∂ΦMWH2.0
∂x1

,

ẍ2 = −∂ΦMWH2.0
∂x2

,

ẍ3 = −∂ΦMWH2.0
∂x3

,

where the elements of the gradient are:

~∇ΦMWH2.0 →



∂ΦMWH2.0
∂x1

= ∂Φnuclear
∂x1

+
∂Φbulge
∂x1

+ ∂Φbar
∂x1

+
∂Φspiral
∂x1

+ ∂Φdisk
∂x1

+ ∂Φdmh
∂x1

,

∂ΦMWH2.0
∂x2

= ∂Φnuclear
∂x2

+
∂Φbulge
∂x2

+ ∂Φbar
∂x2

+
∂Φspiral
∂x2

+ ∂2Φdisk
∂x2

+ ∂Φdmh
∂x2

,

∂ΦMWH2.0
∂x3

= ∂Φnuclear
∂x3

+
∂Φbulge
∂x3

+ ∂Φbar
∂x3

+
∂Φspiral
∂x3

+ ∂Φdisk
∂x3

+ ∂Φdmh
∂x3

,

with x1 = x, x2 = y and x3 = z, then ~x = (x, y, z) and ~px = (px, py, pz) and where the first
derivatives are the ones calculated in Section B.1

B.3 Linearized variational equations

Finally, given the linearized variational equations in its general form5:

5Let us remind the reader that the lineraized variational equations need to be solved simultaneously with
the equations of motion.
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[
d~ξ

dt

]T
=

[
∂ ~f (~ρ; t)

∂~ρ

] [
~ξ
]T

with :



~ξ (0) =
~f(~ρ0;0)

‖~f(~ρ0;0)‖
,

~ξ =
(
δx1 , δx2 , δx3 , δpx1

, δpx2
, δpx3

)
,

~ρ = (x1, x2, x3, px1 , px2 , px3) ,

~f =
(
px1 , px2 , px3 ,− ∂Φ

∂x1
,− ∂Φ

∂x2
,− ∂Φ

∂x3

)
,

we can rewrite them for our particular problem, obtaining:

~̇δx = ~δpx →



δ̇x1 = δpx1
,

δ̇x2 = δpx2
,

δ̇x3 = δpx3
.

[
~̇δpx

]T
= −H (ΦMWH2.0)

[
~δx

]T
,

with H (ΦMWH2.0) the corresponding hessian matrix of the full potential MWH 2.0. The latter
vector identity can be further expanded into:

[
~̇δpx

]T
= −H (ΦMWH2.0)

[
~δx

]T
→



~̇δpx1
= −

[
∂2ΦMWH2.0

∂x2
1

δx1 + ∂2ΦMW
∂x1∂x2

δx2 + ∂2ΦMWH2.0
∂x1∂x3

δx3

]
,

~̇δpx2
= −

[
∂2ΦMWH2.0
∂x2∂x1

δx1 + ∂2ΦMWH2.0

∂x2
2

δx2 + ∂2ΦMWH2.0
∂x2∂x3

δx3

]
,

~̇δpx3
= −

[
∂2ΦMWH2.0
∂x3∂x1

δx1 + ∂2ΦMWH2.0
∂x3∂x2

δx2 + ∂2ΦMWH2.0

∂x2
3

δx3

]
,

where the elements of the hessian matrix are:
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H (ΦMWH2.0)→



∂2ΦMWH2.0

∂x2
1

= ∂2Φnuclear
∂x2

1
+

∂2Φbulge
∂x2

1
+ ∂2Φbar

∂x2
1

+
∂2Φspiral
∂x2

1
+ ∂2Φdisk

∂x2
1

+ ∂2Φdmh
∂x2

1
,

∂2ΦMWH2.0

∂x2
2

= ∂2Φnuclear
∂x2

2
+

∂2Φbulge
∂x2

2
+ ∂2Φbar

∂x2
2

+
∂2Φspiral
∂x2

2
+ ∂2Φdisk

∂x2
2

+ ∂2Φdmh
∂x2

2
,

∂2ΦMWH2.0

∂x2
3

= ∂2Φnuclear
∂x2

3
+

∂2Φbulge
∂x2

3
+ ∂2Φbar

∂x2
3

+
∂2Φspiral
∂x2

3
+ ∂2Φdisk

∂x2
3

+ ∂2Φdmh
∂x2

3
,

∂2ΦMWH2.0
∂x1∂x2

= ∂2Φnuclear
∂x1∂x2

+
∂2Φbulge
∂x1∂x2

+ ∂2Φbar
∂x1∂x2

+
∂2Φspiral
∂x1∂x2

+ ∂2Φdisk
∂x1∂x2

+ ∂2Φdmh
∂x1∂x2

,

∂2ΦMWH2.0
∂x1∂x3

= ∂2Φnuclear
∂x1∂x3

+
∂2Φbulge
∂x1∂x3

+ ∂2Φbar
∂x1∂x3

+
∂2Φspiral
∂x1∂x3

+ ∂2Φdisk
∂x1∂x3

+ ∂2Φdmh
∂x1∂x3

,

∂2ΦMWH2.0
∂x2∂x3

= ∂2Φnuclear
∂x2∂x3

+
∂2Φbulge
∂x2∂x3

+ ∂2Φbar
∂x2∂x3

+
∂2Φspiral
∂x2∂x3

+ ∂2Φdisk
∂x2∂x3

+ ∂2Φdmh
∂x2∂x3

,

with x1 = x, x2 = y and x3 = z, then ~x = (x, y, z) and ~px = (px, py, pz) and where the second
derivatives are the ones calculated in Section B.1.
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Description

C.1 The preamble

In the preamble of the milkywayhydra.pav file, the user will find a brief summary of the
model basics, starting with its current version (and indicating the reference document: this
manual) and the description of the galactic components used. Then, there is a short para-
graph dedicated to explain the mechanism employed for adding/removing the aforementioned
components (ADD-REM parameters, Section C.6), and follows a short comment on the treat-
ment of possible undefined limits in the computation of the equations of motion and the first
variational equations. The preamble is finally closed with an enumeration of the basic working
units (see Section C.7 for further details).

Before continuing with the introduction of the subroutines, we give the working definition of
variable class in the recursive structure of the milkywayhydra.pav file:

• “Starting variable” are all those variables defined in the pot function.

• “Basic variable” are all those variables defined in the previous step, i.e.: (1) all variables
introduced in the pot function are basic variables in the acelera subroutine, and (2)
all variables introduced in the acelera subroutine are basic variables in the variac

subroutine.

• “Auxiliary variable” are all those variables that are not basic variables, i.e. new variables
that need to be introduced in each subroutine to build the rest of the expressions.

C.2 The potinit subroutine

The first subroutine is the potinit (for “potential initialization”) subroutine, which com-
prises the next part of the milkywayhydra.pav file, and it is used to initialize the dimension
and the parameters of the potential, as indicated in the LP-VIcode manual.

The subroutine starts with a fully commented section defining all the parameters of the MWH

2.0 model. Then, the declaration of the variables takes place, giving the dimension and the
type for each parameter before introducing the galactic components (which are separated in

65
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blocks). As an example of the latter, we show here the block corresponding to the peanut–
shaped bulge:

************************************************************************

* PEANUT-SHAPED BULGE

************************************************************************

* Bulge spheroid

* ADD-REM Parameter

* [SOURCE: Marinacci et al. 2014 (MNRAS, 437, 1750)]

* [COMMENT: M_bulge = 4.74x10^9 M_sun]

gmbulge=2.03875458d4

* gmbulge=0.d0

epsbulge=0.835d0

* Bar

* ADD-REM Parameter

* [SOURCE: Monari et al. 2016 (MNRAS, 461, 3835)]

alpha=0.01d0

* alpha=0.d0

barcoef=8.331938927d6

rbar=3.5d0

phibar=5.65d0

* [COMMENT: bomegabar = -52.2 km s-1 kpc-1]

bomegabar=-52.2d0

Every block clearly identifies its ADD-REM parameter at the top (always below the comment
“ADD-REM Parameter”), and offers two options for its value (the reader should remember that
the option that will not be used in the model needs to be commented). First, we have the
default value, for instance:

gmbulge=2.03875458d4

in case of the bulge spheroid, and second, we have the null value, i.e.:

gmbulge=0.d0

which would be used to remove the bulge spheroid component (if it is the option selected and
thus, the one that is not commented1).

Then, we have the source of the analytic description of the component for reference:

* [SOURCE: Marinacci et al. 2014 (MNRAS, 437, 1750)]

1Notice that in case the user does not comment any of the values, the parameter takes the null value (which
is the last value) and the component is not used for the computation.
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as well as the actual values of the physical quantities associated with the parameters involved
in the component that may not be straightforward to be recognized, for example:

* [COMMENT: M_bulge = 4.74x10^9 M_sun]

as the mass of the bulge spheroid involved in the gmbulge parameter.

C.3 The pot function

After the initialization of the parameters, the function pot (for “potential”) is introduced2.
The following is the function’s header:

************************************************************************

FUNCTION pot(t,x,n)

INTEGER n

DOUBLE PRECISION pot,t,x(n)

* t = time

* x(n) = coordinates of the phase space

* n = dimension of the phase space

************************************************************************

Then, we proceed with the definition of the starting variables. See below the case for the
peanut–shaped bulge (to continue with the same component as the one used before):

************************************************************************

* PEANUT-SHAPED BULGE

* BULGE SPHEROID

* rbulge = radius plus epsilon

rbulge = SQRT(x(1)**2+x(2)**2+x(3)**2)+epsbulge

* BAR

* rsph = spherical radius

* gammabar = includes the angular variation

* ubar = includes the radial variation

* bocaone = auxiliary function of rcyl and rsph

* bocatwo = auxiliary function of gammabar

rsph = SQRT(rcyl**2+x(3)**2)

gammabar = 2.d0*(phicyl-phibar-bomegabar*t)

* In order to avoid singularities in the bar potential:

2This function is the only one needed by the pre-processing slave program SMART to automatically compute
the accelerations and first variational equations for the SMART flavour of the milkywayhydra.pav used in
Section D.
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IF(rsph.GE.rbar)THEN

ubar = -1.d0*(rsph/rbar)**(-3)

ELSE

ubar = (rsph/rbar)**3-2.d0

ENDIF

bocaone = (rcyl/rsph)**2

bocatwo = COS(gammabar)

************************************************************************

The definition of the potential corresponding to each block follows. The case for the peanut–
shaped bulge is presented next:

************************************************************************

* PEANUT-SHAPED BULGE

* BULGE SPHEROID

* ADD-REM SECTION: potential

* If gmbulge = 0, the corresponding potential must be 0.

IF(ABS(gmbulge).GT.0.d0)THEN

potbulge = -1.d0*gmbulge/rbulge

ELSE

potbulge = 0.d0

ENDIF

* BAR

* ADD-REM SECTION: potential

* If alphatime = 0, the corresponding potential must be 0.

IF(ABS(alphatime).GT.0.d0)THEN

potbar = alphatime*(barcoef/rbar**3)*ubar*bocaone*bocatwo

ELSE

potbar = 0.d0

ENDIF

************************************************************************

where it should be clear that the IF statement in the “ADD-REM SECTION: potential” is
there to add or remove the components of the potential (accordingly to the value of the
ADD-REM parameter that have been chosen).

At the end of the potinit subroutine, the full MWH 2.0 potential is finally introduced in the
pot function:

* Potential (MWH2.0)
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pot = potsmbh+potbulge

& +potbar

& +potarms

& +potdiskmn

& +potdisk(1)+potdisk(2)+potdisk(3)

& +potdiskthk(1)+potdiskthk(2)+potdiskthk(3)

& +potdmh(1)+potdmh(2)

END

C.4 The acelera subroutine

The acelera (for “accelerations”) subroutine is programmed with the same recursive struc-
ture seen in last section for function pot. First, we have the header indicating the starting
point of the subroutine:

************************************************************************

SUBROUTINE acelera(t,x,n,acc)

INTEGER n

DOUBLE PRECISION t,x(n),acc(n/2)

* t = time

* x(n) = coordinates of the phase space

* n = dimension of the phase space

* acc = accelerations (acc(1) = d[vx]/dt, etc)

************************************************************************

Next, we proceed with the declaration of variables before continuing with the introduction of
the basic variables. Now, as the reader will notice from the next example corresponding to
the peanut–shaped bulge, the basic variables in the acelera subroutine are all the variables
already introduced in function pot, as it was previously mentioned in Section C.1:

************************************************************************

* PEANUT-SHAPED BULGE

* BULGE SPHEROID

rbulge = SQRT(x(1)**2+x(2)**2+x(3)**2)+epsbulge

* ADD-REM SECTION: potential

* If gmbulge = 0, the corresponding potential must be 0.

IF(ABS(gmbulge).GT.0.d0)THEN

potbulge = -1.d0*gmbulge/rbulge

ELSE

potbulge = 0.d0

ENDIF
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* BAR

rsph = SQRT(rcyl**2+x(3)**2)

gammabar = 2.d0*(phicyl-phibar-bomegabar*t)

* In order to avoid singularities in the bar potential:

IF(rsph.GE.rbar)THEN

ubar = -1.d0*(rsph/rbar)**(-3)

ELSE

ubar = (rsph/rbar)**3-2.d0

ENDIF

bocaone = (rcyl/rsph)**2

bocatwo = COS(gammabar)

* ADD-REM SECTION: potential

* If alphatime = 0, the corresponding potential must be 0.

IF(ABS(alphatime).GT.0.d0)THEN

potbar = alphatime*(barcoef/rbar**3)*ubar*bocaone*bocatwo

ELSE

potbar = 0.d0

ENDIF

************************************************************************

Therefore, the potential corresponding to each component turns to be another “basic variable”
in this new subroutine. Then, we need to introduced the auxiliary variables (those that do
not appear previously in the pot function), see the associated peanut–shaped bulge section:

************************************************************************

* PEANUT-SHAPED BULGE

* BULGE SPHEROID

arg(4) = rbulge-epsbulge

DO i=1,nv

* Checking Arithmetic Exceptions (5) (rbulge must be > 0)

* iff x(i)=0 for every i, limit does not exist, program stops.

IF(arg(4).GT.0.d0)THEN

drbulgedx(i) = x(i)/(arg(4))

ELSE

WRITE(*,*) "Look for 5.AE-acelera in pav file"

CONTINUE

ENDIF

ENDDO
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* BAR

drsphdrcyl = rcyl/rsph

DO i=1,nv-1

drsphdx(i) = drsphdrcyl*drcyldx(i)

ENDDO

drsphdx(3) = x(3)/rsph

dgammabardphicyl = 2.d0

DO i=1,nv-1

dgammabardx(i) = dgammabardphicyl*dphicyldx(i)

ENDDO

dgammabardx(3) = 0.d0

IF(rsph.GE.rbar)THEN

dubardrsph = -(3.d0/rsph)*ubar

ELSE

dubardrsph = (3.d0/rsph)*(ubar+2.d0)

ENDIF

DO i=1,nv

dubardx(i) = dubardrsph*drsphdx(i)

ENDDO

docaonedrsph = -1.d0*(2.d0/rsph)*drsphdrcyl**2

docaonedrcyl = (2.d0/rsph)*drsphdrcyl

DO i=1,nv-1

docaonedx(i) = (docaonedrcyl+docaonedrsph*drsphdrcyl)*

& drcyldx(i)

ENDDO

docaonedx(3) = docaonedrsph*drsphdx(3)

docatwodgammabar = -1.d0*SIN(gammabar)

DO i=1,nv-1

docatwodx(i) = docatwodgammabar*dgammabardx(i)

ENDDO

************************************************************************

where the variables involved in the computation of the first derivatives of the potential are
presented, which includes the first derivatives of the basic variables. Next, we compute the
first derivatives of each component of the potential. As it is done with the potential, the
ADD-REM SECTION: first derivatives is used in the following to eliminate all the first



72 APPENDIX C. DESCRIPTION

derivatives of those components that are not being considered. Once again, the peanut–
shaped bulge is shown here for reference and comparison purposes:

************************************************************************

* PEANUT-SHAPED BULGE

* BULGE SPHEROID

DO i=1,nv

* ADD-REM SECTION: first derivatives

* If gmbulge = 0, the corresponding derivatives must be 0.

IF(ABS(gmbulge).GT.0.d0)THEN

dpotbulgedx(i) = -1.d0*(potbulge/rbulge)*(drbulgedx(i))

ELSE

dpotbulgedx(i) = 0.d0

ENDIF

ENDDO

* BAR

dpotbardubar = alphatime*(barcoef/rbar**3)*bocaone*bocatwo

dpotbardocaone = alphatime*(barcoef/rbar**3)*ubar*bocatwo

dpotbardocatwo = alphatime*(barcoef/rbar**3)*ubar*bocaone

DO i=1,nv-1

* ADD-REM SECTION: first derivatives

* If alphatime = 0, the corresponding derivatives must be 0.

IF(ABS(alphatime).GT.0.d0)THEN

dpotbardx(i) = dpotbardubar*dubardx(i)+

& dpotbardocaone*docaonedx(i)+

& dpotbardocatwo*docatwodx(i)

ELSE

dpotbardx(i) = 0.d0

ENDIF

ENDDO

* ADD-REM SECTION: first derivatives

* If alphatime = 0, the corresponding derivatives must be 0.

IF(ABS(alphatime).GT.0.d0)THEN

dpotbardx(3) = dpotbardubar*dubardx(3)+

& dpotbardocaone*docaonedx(3)

ELSE

dpotbardx(3) = 0.d0

ENDIF

************************************************************************

Finally, we present the last section of the acelera subroutine where we compute the equations
of motion using the first derivatives of the potentials that have been defined previously:
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* Accelerations (MWH2.0)

DO i=1,nv

dpotdx(i) = dpotsmbhdx(i)+dpotbulgedx(i)

& +dpotbardx(i)

& +dpotarmsdx(i)

& +dpotdiskmndx(i)

& +dpotdiskdx(1,i)+dpotdiskdx(2,i)

& +dpotdiskdx(3,i)+dpotdiskthkdx(1,i)

& +dpotdiskthkdx(2,i)+dpotdiskthkdx(3,i)

& +dpotdmhdx(1,i)+dpotdmhdx(2,i)

ENDDO

DO i=1,n/2

acc(i) = -1.d0*(dpotdx(i))

ENDDO

END

The whole structure of the subroutine tries to follow a recursive programming style with each
component perfectly identified within a single chain of blocks. This style is also followed in
the last of the subroutines that build up the milkywayhydra.pav file, the variac subroutine.

C.5 The variac subroutine

The variac (for “first variationals”) subroutine starts with the header:

************************************************************************

SUBROUTINE variac(t,x,dx,n,dax)

INTEGER n

DOUBLE PRECISION t,x(n),dx(n),dax(n/2)

* n = dimension of the phase space

* x = coordinates of the phase space

* dx = differentials (deltas) of the coordinates of the phase space

* dax = derivatives (dax(1) = d[dvx]/dt, etc)

************************************************************************

and continue with the declaration of variables before continuing with the introduction of
the basic variables. Now there is a new shift due to our definition of “basic variable” (Sec-
tion C.1): the basic variables in the variac subroutine are all the variables already introduced
in acelera. See the case of the peanut–shaped bulge:

************************************************************************

* PEANUT-SHAPED BULGE

* BULGE SPHEROID
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rbulge = SQRT(x(1)**2+x(2)**2+x(3)**2)+epsbulge

* ADD-REM SECTION: potential

* If gmbulge = 0, the corresponding potential must be 0.

IF(ABS(gmbulge).GT.0.d0)THEN

potbulge = -1.d0*gmbulge/rbulge

ELSE

potbulge = 0.d0

ENDIF

arg(4) = rbulge-epsbulge

DO i=1,nv

* Checking Arithmetic Exceptions (5) (rbulge must be > 0)

* iff x(i)=0 for every i, limit does not exist, program stops.

IF(arg(4).GT.0.d0)THEN

drbulgedx(i) = x(i)/(arg(4))

ELSE

WRITE(*,*) "Look for 5.AE-variac in pav file"

CONTINUE

ENDIF

ENDDO

DO i=1,nv

* ADD-REM SECTION: first derivatives

* If gmbulge = 0, the corresponding derivatives must be 0.

IF(ABS(gmbulge).GT.0.d0)THEN

dpotbulgedx(i) = -1.d0*(potbulge/rbulge)*(drbulgedx(i))

ELSE

dpotbulgedx(i) = 0.d0

ENDIF

ENDDO

* BAR

rsph = SQRT(rcyl**2+x(3)**2)

gammabar = 2.d0*(phicyl-phibar-bomegabar*t)

* In order to avoid singularities in the bar potential:

IF(rsph.GE.rbar)THEN

ubar = -1.d0*(rsph/rbar)**(-3)

ELSE

ubar = (rsph/rbar)**3-2.d0

ENDIF

bocaone = (rcyl/rsph)**2

bocatwo = COS(gammabar)

* ADD-REM SECTION: potential
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* If alphatime = 0, the corresponding potential must be 0.

IF(ABS(alphatime).GT.0.d0)THEN

potbar = alphatime*(barcoef/rbar**3)*ubar*bocaone*bocatwo

ELSE

potbar = 0.d0

ENDIF

drsphdrcyl = rcyl/rsph

DO i=1,nv-1

drsphdx(i) = drsphdrcyl*drcyldx(i)

ENDDO

drsphdx(3) = x(3)/rsph

dgammabardphicyl = 2.d0

DO i=1,nv-1

dgammabardx(i) = dgammabardphicyl*dphicyldx(i)

ENDDO

dgammabardx(3) = 0.d0

IF(rsph.GE.rbar)THEN

dubardrsph = -(3.d0/rsph)*ubar

ELSE

dubardrsph = (3.d0/rsph)*(ubar+2.d0)

ENDIF

DO i=1,nv

dubardx(i) = dubardrsph*drsphdx(i)

ENDDO

docaonedrsph = -1.d0*(2.d0/rsph)*drsphdrcyl**2

docaonedrcyl = (2.d0/rsph)*drsphdrcyl

DO i=1,nv-1

docaonedx(i) = (docaonedrcyl+docaonedrsph*drsphdrcyl)*

& drcyldx(i)

ENDDO

docaonedx(3) = docaonedrsph*drsphdx(3)

docatwodgammabar = -1.d0*SIN(gammabar)

DO i=1,nv-1

docatwodx(i) = docatwodgammabar*dgammabardx(i)

ENDDO

dpotbardubar = alphatime*(barcoef/rbar**3)*bocaone*bocatwo

dpotbardocaone = alphatime*(barcoef/rbar**3)*ubar*bocatwo

dpotbardocatwo = alphatime*(barcoef/rbar**3)*ubar*bocaone
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DO i=1,nv-1

* ADD-REM SECTION: first derivatives

* If alphatime = 0, the corresponding derivatives must be 0.

IF(ABS(alphatime).GT.0.d0)THEN

dpotbardx(i) = dpotbardubar*dubardx(i)+

& dpotbardocaone*docaonedx(i)+

& dpotbardocatwo*docatwodx(i)

ELSE

dpotbardx(i) = 0.d0

ENDIF

ENDDO

* ADD-REM SECTION: first derivatives

* If alphatime = 0, the corresponding derivatives must be 0.

IF(ABS(alphatime).GT.0.d0)THEN

dpotbardx(3) = dpotbardubar*dubardx(3)+

& dpotbardocaone*docaonedx(3)

ELSE

dpotbardx(3) = 0.d0

ENDIF

************************************************************************

Therefore, not only the potential (as in the the acelera subroutine) but also the first deriva-
tives corresponding to each component turns to be another “basic variable” in this new
subroutine. Then, we need to introduced the auxiliary variables (those that do not appear
previously in the acelera subroutine), see the associated peanut–shaped bulge section3:

************************************************************************

* PEANUT-SHAPED BULGE

* BAR

d2rsphd2rcyl = (1.d0/rsph)*(1.d0-drsphdrcyl**2)

d2rsphdzdrcyl = (-1.d0/rsph)*(drsphdrcyl*drsphdx(3))

DO j=1,nv-1

DO k=1,nv-1

d2rsphdxdy(j,k) = d2rsphd2rcyl*drcyldx(j)*drcyldx(k)+

& drsphdrcyl*d2rcyldxdy(j,k)

ENDDO

ENDDO

DO j=1,nv-1

d2rsphdxdy(3,j) = d2rsphdzdrcyl*drcyldx(j)

d2rsphdxdy(j,3) = d2rsphdxdy(3,j)

3Notice that the bulge spheroid does not have any auxiliary variables.
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ENDDO

d2rsphdxdy(3,3) = (1.d0/rsph)*(1.d0-drsphdx(3)**2)

DO j=1,nv-1

DO k=1,nv-1

d2gammabardxdy(j,k) = dgammabardphicyl*d2phicyldxdy(j,k)

ENDDO

ENDDO

IF(rsph.GE.rbar)THEN

d2ubard2rsph = +1.d0*(3.d0/rsph**2)*ubar

& -(3.d0/rsph)*dubardrsph

ELSE

d2ubard2rsph = (-3.d0/rsph**2)*(ubar+2.d0)

& +(3.d0/rsph)*dubardrsph

ENDIF

DO j=1,nv-1

DO k=1,nv-1

d2ubardxdy(j,k) = d2ubard2rsph*drsphdx(j)*drsphdx(k)

& +dubardrsph*d2rsphdxdy(j,k)

ENDDO

ENDDO

DO j=1,nv-1

d2ubardxdy(3,j) = d2ubard2rsph*drsphdx(3)*drsphdx(j)

& +dubardrsph*d2rsphdxdy(3,j)

d2ubardxdy(j,3) = d2ubardxdy(3,j)

ENDDO

d2ubardxdy(3,3) = (1.d0/rsph)*(dubardrsph)*(1.d0-drsphdx(3)**2)

& +d2ubard2rsph*drsphdx(3)**2

d2ocaoned2rsph = (2.d0/rsph)*(bocaone/rsph-docaonedrsph)

d2ocaoned2rcyl = 2.d0/rsph**2

d2ocaonedrsphdrcyl = (-4.d0/rsph**2)*drsphdrcyl

DO j=1,nv-1

DO k=1,nv-1

d2ocaonedxdy(j,k) = d2ocaoned2rcyl*drcyldx(j)*drcyldx(k)

& +d2ocaoned2rsph*drsphdx(j)*drsphdx(k)

& +d2ocaonedrsphdrcyl*(drcyldx(j)*drsphdx(k)

& +drsphdx(j)*drcyldx(k))

& +docaonedrcyl*d2rcyldxdy(j,k)

& +docaonedrsph*d2rsphdxdy(j,k)

ENDDO
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ENDDO

DO j=1,nv-1

d2ocaonedxdy(3,j) = d2ocaoned2rsph*drsphdx(3)*drsphdx(j)

& +d2ocaonedrsphdrcyl*drsphdx(3)*drcyldx(j)

& +docaonedrsph*d2rsphdxdy(3,j)

d2ocaonedxdy(j,3) = d2ocaonedxdy(3,j)

ENDDO

d2ocaonedxdy(3,3) = d2ocaoned2rsph*drsphdx(3)**2

& +docaonedrsph*d2rsphdxdy(3,3)**2

d2ocatwod2gammabar = -1.d0*bocatwo

DO j=1,nv-1

DO k=1,nv-1

d2ocatwodxdy(j,k) = d2ocatwod2gammabar*dgammabardx(j)*

& dgammabardx(k)+docatwodgammabar*

& d2gammabardxdy(j,k)

ENDDO

ENDDO

************************************************************************

where the variables involved in the computation of the second derivatives of the potential
are presented, which includes second derivatives of the basic variables. Next, we compute the
second derivatives of each component of the potential. Of course, as it is with the potential and
the first derivatives, the ADD-REM SECTION: second derivatives is used in the following to
eliminate all the second derivatives of those components that are not being considered. The
case of the peanut–shaped bulge follows:

************************************************************************

* PEANUT-SHAPED BULGE

* BULGE SPHEROID

* ADD-REM SECTION: second derivatives

* If gmbulge = 0, the corresponding derivatives must be 0.

IF(ABS(gmbulge).GT.0.d0)THEN

DO j=1,nv

DO k=1,nv

IF(j.eq.k)THEN

d2potbulgedxdy(j,k) = (potbulge/rbulge**2)

& *(drbulgedx(j)**2)*(3.d0+(epsbulge/

& (arg(4))))-(potbulge

& /(rbulge*(arg(4))))
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ELSE

d2potbulgedxdy(j,k) = (potbulge/rbulge**2)

& *(drbulgedx(j)*drbulgedx(k))

& *(3.d0+(epsbulge/(arg(4))))

ENDIF

ENDDO

ENDDO

ELSE

DO j=1,nv

DO k=1,nv

d2potbulgedxdy(j,k) = 0.d0

ENDDO

ENDDO

ENDIF

* BAR

d2potbardubardocaone = alphatime*(barcoef/rbar**3)*bocatwo

d2potbardubardocatwo = alphatime*(barcoef/rbar**3)*bocaone

d2potbardocaonedocatwo = alphatime*(barcoef/rbar**3)*ubar

* ADD-REM SECTION: second derivatives

* If alphatime = 0, the corresponding derivatives must be 0.

IF(ABS(alphatime).GT.0.d0)THEN

DO j=1,nv-1

DO k=1,nv-1

d2potbardxdy(j,k) = d2potbardubardocaone*(dubardx(j)

& *docaonedx(k)+dubardx(k)*docaonedx(j))

& +d2potbardubardocatwo*(dubardx(j)

& *docatwodx(k)+dubardx(k)*docatwodx(j))

& +d2potbardocaonedocatwo*(docaonedx(j)

& *docatwodx(k)+docaonedx(k)*docatwodx(j))

& +dpotbardubar*d2ubardxdy(j,k)

& +dpotbardocaone*d2ocaonedxdy(j,k)

& +dpotbardocatwo*d2ocatwodxdy(j,k)

ENDDO

ENDDO

DO j=1,nv-1

d2potbardxdy(3,j) = d2potbardubardocaone*(dubardx(3)

& *docaonedx(j)+dubardx(j)*docaonedx(3))

& +d2potbardubardocatwo*dubardx(3)

& *docatwodx(j)+d2potbardocaonedocatwo

& *docaonedx(3)*docatwodx(j)

& +dpotbardubar*d2ubardxdy(3,j)
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& +dpotbardocaone*d2ocaonedxdy(3,j)

d2potbardxdy(j,3) = d2potbardxdy(3,j)

ENDDO

d2potbardxdy(3,3) = d2potbardubardocaone*(2.d0*dubardx(3)

& *docaonedx(3))+dpotbardubar*d2ubardxdy(3,3)

& +dpotbardocaone*d2ocaonedxdy(3,3)

ELSE

DO j=1,nv

DO k=1,nv

d2potbardxdy(j,k) = 0.d0

ENDDO

ENDDO

ENDIF

************************************************************************

Finally, we present the last section of the variac subroutine where we compute the linearized
variational equations using the second derivatives of the potentials previously defined:

* Linearized variational equations (MWH2.0)

* Initialization

DO j=1,n/2

dax(j)=0.d0

ENDDO

DO j=1,nv

DO k=1,nv

d2potdxdy(j,k) = d2potsmbhdxdy(j,k)

& +d2potbulgedxdy(j,k)

& +d2potbardxdy(j,k)

& +d2potarmsdxdy(j,k)

& +d2potdiskmndxdy(j,k)

& +d2potdisk1dxdy(j,k)

& +d2potdisk2dxdy(j,k)

& +d2potdisk3dxdy(j,k)

& +d2potdisk1thkdxdy(j,k)

& +d2potdisk2thkdxdy(j,k)

& +d2potdisk3thkdxdy(j,k)

& +d2potdmh1dxdy(j,k)

& +d2potdmh2dxdy(j,k)

ENDDO

ENDDO
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* Computation

DO j=1,n/2

DO k=1,n/2

dax(j) = dax(j)-1.d0*d2potdxdy(j,k)*dx(k)

ENDDO

ENDDO

C.6 The ADD-REM parameters

The ADD-REM (short for adding/removing) parameters are used to eliminate the associated
galactic components. They can be found in the preamble of the milkywayhydra.pav file and
are the following:

************************************************************************

* COMPONENT ADD-ONs

* The galactic components are treating separately, then the user can

* add/change as many as she/he wants, just copying/modifying the right

* blocks in the potinit, acelera and variac subroutines.

* In case of the spiral arms, the user can add/change modes by

* adding/changing the terms involved in the series.

* ADD-REM PARAMETERS

* Setting their values to zero, removes the associated component.

* Notice that in such cases, the value "zero" is always present as a

* comment.

* NUCLEAR REGION: gmsmbh.

* PEANUT-SHAPED BULGE: gmbulge [spheroid], alpha [bar].

* SPIRAL ARMS: armscoef.

* DISK:

* (1) gmdiskmn,

* (2) gmdisk(1,2,3) [thin disk], gmdiskthk(1,2,3) [thick disk].

* DARK MATTER HALO:

* (1) acoef,

* (2) vhalo.

* ADD-REM GROWTH FACTORS

* BAR AND SPIRAL ARMS: atime.

************************************************************************

For instance, if the gmsmbh is set to zero, then the nuclear region component is discarded. If
the alpha parameter is set to zero, the bar in the peanut–shaped bulge is discarded and we
will only have a bulge made of a simple Hernquist spheroid. In case of the disk and DMH
components, notice that there are two profiles for each component so one of those profiles
should be set to zero. For example, if the user wants to have a NFW profile, the parameter
vhalo corresponding to the logarithmic profile of the DMH should be set to zero in order to
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discard that profile. The same happens with the disk, if the user wants to apply an expo-
nential profile with a thin and a thick disks, then gmdiskmn should be set to zero in order to
discard the MN option for the disk.

In case of these ADD-REM parameters, there is always two options in the milkywayhydra.pav

file: the default option and the null option. If the user wants to discard one of the components,
she/he has to comment the default value and uncomment the null value. Then, the selected
component (potential, first and second derivatives) would be discarded from the computation.

C.7 The working units

The milkywayhydra.pav uses the following basic working units:

input file units:

• positions: kpc,

• velocities: km/s;

integration:

• positions: kpc+km/s*[time],

• velocities: km/s+(km/s)2*(1/kpc)*[time],

which implies that the time unit (u.t.) in the milkywayhydra.pav is:

• u.t.: (kpc/gyr)*(s/km)*gyr,

then 1 [u.t.] ' 0.9778 Gyr;

physical quantities units:

• mass: M�,

• density: M�/kpc
3,

• angles: rad ∈ [0 : 2π),

• angular velocity: (km/s)/kpc,

and the value for the gravitational constant G is: 4.30117× 10−6 (km/s)2 ∗ (kpc/M�).

The derived quantities use the following working units:

1. potinit subroutine input units:

• gmsmbh: (km/s)2 ∗ kpc,

• epsmbh: kpc,

• atime: u.t.,
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• gmbulge: (km/s)2 ∗ kpc,

• epsbulge: kpc,

• alpha: adimensional,

• barcoef: (km/s)2 ∗ kpc3,

• rbar: kpc,

• phibar: rad,

• bomegabar: km/s ∗ kpc−1,

• armscoef: (km/s)2,

• narms: adimensional,

• nindex: adimensional,

• p: rad,

• rarms: kpc,

• rscarms: kpc,

• phiarms: rad,

• bomegarms: km/s ∗ kpc−1,

• hs: kpc,

• excoefarms: kpc,

• gmdiskmn: (km/s)2 ∗ kpc,

• epscalemn: kpc,

• epsheightmn: kpc,

• gmdisk(i): (km/s)2 ∗ kpc,

• epscale(i): kpc,

• epsheight(i): kpc,

• acoef: kpc ∗ (km/s)2,

• rs: kpc,

• scoefi(i): adimensional,

• scoefe(i): adimensional,

• vhalo: km/s,

• d: kpc4,

• ra: kpc5,

• qcoef(i): adimensional,

• qqcoef(i): adimensional,

• ascoef(i): adimensional,

• wcoef(i): adimensional;

4Actually, and formally speaking, all parameters and variables in the argument of the log function should
be adimensional. However, this is not an issue here, so the number associated to the parameter should be
thought as in the units shown.

5Idem d.
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2. pot function output units:

• potential: (km/s)2;

3. acelera subroutine output units:

• acc(i): (km/s)2 ∗ kpc−1;

4. and finally, variac subroutine output units:

• dax(i): (km/s)2 ∗ kpc−1,

• d2potdxdy(i,j): (km/s)2 ∗ kpc−2,

• dx(j): kpc.



Appendix D

Validation

In the present appendix we are going to test numerically the validity of the pre–SMART flavour
of the milkywayhydra.pav, comparing the results from both flavours, pre–SMART and SMART

(which were computed in ways completely different) on the same test model.

The model chosen to test the validity of the milkywayhydra.pav is the Hydra 2.0 intro-
duced in Section 2.3 and consists of a nuclear region, a peanut–shaped bulge, two–armed
spiral pattern (with super strong spirals, i.e. 200% density contrast, see Section 2.2.3 for
further details), two–component exponential stellar disk and the option (1) for the DMH
(Section 2.2.5). The latter has, indeed, a bi–triaxial shape for the experiments on individual
orbits where we take our sample from the DMH, or a perfectly oblate shape in the inner
regions while perfectly spherical in the outer parts for the experiments on big samples of
orbits (i.e. a slightly modified Hydra 2.0), where our samples are taken from the thin disk
instead. The rest of the values for the parameters are the ones for the default MWH 2.0 model
(Section 2.2 for references).

D.1 Generating the initial conditions

In this section we present the setting of the experiments to validate the milkywayhydra.pav.
We start applying the MAGI code [21]1 to generate the initial conditions following the distri-
bution of the time independent (hereinafter TI) version of our Hydra 2.0 Milky Way–type
galactic potential under study (i.e. no bar or spiral pattern yet activated).

In the run.sh file we set the number of particles to be generated by the code in 33554432
(225), and the problem ID (as MAGI calls it) “6” that points to our TI model which reads as
follows:

FILE=hydra

CONFIG=milkyway/hydra.cfg

EPS=1.5625e-2

ETA=0.5

FINISH=1575.0

1The code is provided as an open–source software and is publicly and freely available at https://bitbucket.
org/ymiki/magi.
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INTERVAL=25.0

Also, the unit system chosen to be used by MAGI during the computation is indicated by
the number “1” which means “galactic scale”: M�, kpc and Myr being the corresponding
astrophysical units, then 108 M� = 1, 1 kpc = 1 and 100 Myr = 1 are the unit conversion
parameters into computational units (C.U.). Finally, positions are returned by the code in
units of kpc (1 kpc = 1 C.U.) but velocities need an intermediate unit conversion step because
1 C.U. = 9.777922 km/s in astrophysical units. Thus, in the latter case the unit conversion
should take place before it can be read by the LP-VIcode which uses kpc and km/s as work-
ing units for positions and velocities, respectively (see further details on the unit system in
Section C.7).

The input files for MAGI (further configuration details in the associated README file) are the
following:

File name: hydra.cfg
File contents:

1

5

0 milkyway/hydra_nuclear.param 0 0

3 milkyway/hydra_bulge.param 0 0

4 milkyway/hydra_dmhalo.param 0 0

-1 milkyway/hydra_thindisk.param 0 0

-1 milkyway/hydra_thickdisk.param 0 0

where the numbering before the parameter files refers to:

• 0: Plummer sphere;

• 3: Hernsquist sphere;

• 4: NFW sphere;

• -1: Exponential disk;

The abovementioned parameter files for the nuclear region, the spherical component of the
bulge, the two–component stellar disk and the DMH (respectively) are listed below:

File name: hydra_nuclear.param
File contents:

2.0e+8

0.03

1

0.3 0.03

File name: hydra_bulge.param
File contents:
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4.74e+9

0.835

1

10.0 1.0

File name: hydra_thindisk.param
File contents:

5.276e+10

3.123

0.3

-1.0 0.1

0.0

1

30.0 3.0

File name: hydra_thickdisk.param
File contents:

0.686e+10

3.123

1

-1.0 0.1

0.0

1

30.0 3.0

File name: hydra_dmhalo.param
File contents:

14.564e+11

14.63

1

234.5 25.0

Finally, the last step in the configuration of MAGI is the cmake compilation flags. The
following changes on the default flag values are used: -DUSE_TIPSY_FORMAT=OFF to avoid
this format, -DUSE_GALACTICS_FORMAT=ON to output data in ASCII format and (optional)
-DQUICK_CHECK=ON to have a smaller sample for an easy and fast checking.

A slightly modified hydra.info.txt is included below for references of the built system. This
file is part of the MAGI documentation output files.

#############################################################################

#############################################################################

Fundamental information about the particle distribution

generated on Sat Jul 11 16:48:48 2020

Physical quantities in Astrophysical units is listed

#############################################################################

#############################################################################
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Total mass of the system Mtot is 1.520960e+12 Msun

Total number of particles Ntot is 33554432 (= 2^25)

Number of components kind is 5

#############################################################################

Length of Plummer softening is 1.953125e-03 kpc

Snapshot interval is 2.500000e+01 Myr

Final time of the simulation is 1.575000e+03 Myr

#############################################################################

#############################################################################

#############################################################################

#############################################################################

0-th component: Plummer model

#############################################################################

Total number of particles Ntot is 4412 (about 2^12)

Range of idx for the component is [0, 4411]

Mass of each N-body particle m is 4.533092e+04 Msun

#############################################################################

Total mass of the component Mtot is 2.000000e+08 Msun

Scale radius of the component rs is 3.000000e-02 kpc

Scale density of the component rho0 is 1.216003e+01 E-20 g / cm3

#############################################################################

#############################################################################

Representative scales:

Half-mass radius r_{1/2} is 3.859127e-02 kpc

Effective radius R_{eff} is 1.712579e-02 kpc

#########

Representative quantities at the center:

Volume density rho is 1.216003e+01 E-20 g / cm3

Column density Sigma is 1.500800e+01 g / cm2

Velocity dispersion sigma_r is 7.505508e+01 km / s

LoS velocity dispersion sig_los is 7.008284e+01 km / s

#########

Representative quantities at the scale radius:

Volume density rho is 2.149610e+00 E-20 g / cm3

Column density Sigma is 3.751419e+00 g / cm2

Enclosed mass of this component is 7.184391e+07 Msun

Enclosed mass of all components is 8.113377e+07 Msun

Velocity dispersion sigma_r is 6.309609e+01 km / s

LoS velocity dispersion sig_los is 6.031318e+01 km / s

#########

Representative quantities at the half-mass radius:

Volume density rho is 1.058938e+00 E-20 g / cm3

Column density Sigma is 2.128883e+00 g / cm2

Enclosed mass of this component is 1.000000e+08 Msun

Enclosed mass of all components is 1.152773e+08 Msun

Velocity dispersion sigma_r is 5.975230e+01 km / s
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LoS velocity dispersion sig_los is 5.738213e+01 km / s

#########

Representative quantities at the effective radius:

Volume density rho is 6.007222e+00 E-20 g / cm3

Column density Sigma is 8.536835e+00 g / cm2

Enclosed mass of this component is 2.476088e+07 Msun

Enclosed mass of all components is 2.778494e+07 Msun

Velocity dispersion sigma_r is 6.892584e+01 km / s

LoS velocity dispersion sig_los is 6.546126e+01 km / s

#############################################################################

Cutoff radius of the component is 3.000000e-01 kpc

Cutoff width of the component is 3.000000e-02 kpc

Cutoff radius over scale radius is 1.000000e+01

Cutoff width over scale radius is 1.000000e+00

Cutoff energy of the component is 2.695822e+05 E+10 erg / g

(= 9.402097e+00 G Mtot / rs)

#############################################################################

Total number of particles within the scale length is 1.790000e+03

Enclosed mass of all components within the scale length is 8.113377e+07 Msun

Free-fall time at the scale length is 3.021021e-01 Myr

Two-body relaxation time at the scale length is 6.186046e+00 Myr

#############################################################################

Snapshot interval in the unit of free-fall time is 8.275349e+01

Snapshot interval in the unit of two-body relaxation time is 4.041354e+00

#############################################################################

Final time of the simulation in the unit of free-fall time is 5.213470e+03

Final time of the simulation in the unit of two-body relaxation time is 2.546053e+02

#############################################################################

#############################################################################

#############################################################################

#############################################################################

1-th component: Hernquist model

#############################################################################

Total number of particles Ntot is 104570 (about 2^16)

Range of idx for the component is [4412, 108981]

Mass of each N-body particle m is 4.532849e+04 Msun

#############################################################################

Total mass of the component Mtot is 4.740000e+09 Msun

Scale radius of the component rs is 8.350000e-01 kpc

Scale density of the component rho0 is 1.032511e-02 E-20 g / cm3

#############################################################################

#############################################################################

Representative scales:

Half-mass radius r_{1/2} is 1.562208e+00 kpc

Effective radius R_{eff} is 5.150969e-01 kpc

#########
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Representative quantities at the center:

Volume density rho is 9.040235e+03 E-20 g / cm3

Column density Sigma is 6.276181e+00 g / cm2

Velocity dispersion sigma_r is 4.279501e+01 km / s

LoS velocity dispersion sig_los is 8.090217e+01 km / s

#########

Representative quantities at the scale radius:

Volume density rho is 1.290639e-03 E-20 g / cm3

Column density Sigma is 7.079408e-02 g / cm2

Enclosed mass of this component is 1.395153e+09 Msun

Enclosed mass of all components is 4.303589e+09 Msun

Velocity dispersion sigma_r is 9.966850e+01 km / s

LoS velocity dispersion sig_los is 1.038131e+02 km / s

#########

Representative quantities at the half-mass radius:

Volume density rho is 2.332300e-04 E-20 g / cm3

Column density Sigma is 2.128270e-02 g / cm2

Enclosed mass of this component is 2.370000e+09 Msun

Enclosed mass of all components is 1.139864e+10 Msun

Velocity dispersion sigma_r is 1.084882e+02 km / s

LoS velocity dispersion sig_los is 1.115300e+02 km / s

#########

Representative quantities at the effective radius:

Volume density rho is 3.959651e-03 E-20 g / cm3

Column density Sigma is 1.499972e-01 g / cm2

Enclosed mass of this component is 8.123254e+08 Msun

Enclosed mass of all components is 2.014898e+09 Msun

Velocity dispersion sigma_r is 9.392771e+01 km / s

LoS velocity dispersion sig_los is 9.842555e+01 km / s

#############################################################################

Cutoff radius of the component is 1.000000e+01 kpc

Cutoff width of the component is 1.000000e+00 kpc

Cutoff radius over scale radius is 1.197605e+01

Cutoff width over scale radius is 1.197605e+00

Cutoff energy of the component is 7.929909e+04 E+10 erg / g

(= 3.248020e+00 G Mtot / rs)

#############################################################################

Total number of particles within the scale length is 9.494200e+04

Enclosed mass of all components within the scale length is 4.303589e+09 Msun

Free-fall time at the scale length is 6.090977e+00 Myr

Two-body relaxation time at the scale length is 2.983088e+03 Myr

#############################################################################

Snapshot interval in the unit of free-fall time is 4.104432e+00

Snapshot interval in the unit of two-body relaxation time is 8.380578e-03

#############################################################################

Final time of the simulation in the unit of free-fall time is 2.585792e+02

Final time of the simulation in the unit of two-body relaxation time is 5.279764e-01
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#############################################################################

#############################################################################

#############################################################################

#############################################################################

2-th component: NFW model

#############################################################################

Total number of particles Ntot is 32130154 (about 2^24)

Range of idx for the component is [108982, 32239135]

Mass of each N-body particle m is 4.532814e+04 Msun

#############################################################################

Total mass of the component Mtot is 1.456400e+12 Msun

Scale radius of the component rs is 1.463000e+01 kpc

Scale density of the component rho0 is 1.329217e-04 E-20 g / cm3

#############################################################################

#############################################################################

Representative scales:

Half-mass radius r_{1/2} is 7.145874e+01 kpc

Effective radius R_{eff} is 2.272094e+01 kpc

#########

Representative quantities at the center:

Volume density rho is 2.039108e+03 E-20 g / cm3

Column density Sigma is 1.509996e+00 g / cm2

Velocity dispersion sigma_r is 4.593675e+01 km / s

LoS velocity dispersion sig_los is 9.980669e+01 km / s

#########

Representative quantities at the scale radius:

Volume density rho is 3.323043e-05 E-20 g / cm3

Column density Sigma is 3.952033e-02 g / cm2

Enclosed mass of this component is 1.492709e+11 Msun

Enclosed mass of all components is 2.102915e+11 Msun

Velocity dispersion sigma_r is 1.647067e+02 km / s

LoS velocity dispersion sig_los is 1.546137e+02 km / s

#########

Representative quantities at the half-mass radius:

Volume density rho is 7.859230e-07 E-20 g / cm3

Column density Sigma is 3.514395e-03 g / cm2

Enclosed mass of this component is 7.282000e+11 Msun

Enclosed mass of all components is 7.927600e+11 Msun

Velocity dispersion sigma_r is 1.221260e+02 km / s

LoS velocity dispersion sig_los is 1.121341e+02 km / s

#########

Representative quantities at the effective radius:

Volume density rho is 1.313105e-05 E-20 g / cm3

Column density Sigma is 2.242102e-02 g / cm2

Enclosed mass of this component is 2.542427e+11 Msun

Enclosed mass of all components is 3.184481e+11 Msun
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Velocity dispersion sigma_r is 1.541847e+02 km / s

LoS velocity dispersion sig_los is 1.442999e+02 km / s

#############################################################################

Cutoff radius of the component is 2.345000e+02 kpc

Cutoff width of the component is 2.500000e+01 kpc

Cutoff radius over scale radius is 1.602871e+01

Cutoff width over scale radius is 1.708817e+00

Cutoff energy of the component is 4.226321e+03 E+10 erg / g

(= 9.871166e-03 G Mtot / rs)

#############################################################################

Total number of particles within the scale length is 4.639313e+06

Enclosed mass of all components within the scale length is 2.102915e+11 Msun

Free-fall time at the scale length is 6.390403e+01 Myr

Two-body relaxation time at the scale length is 1.038482e+06 Myr

#############################################################################

Snapshot interval in the unit of free-fall time is 3.912116e-01

Snapshot interval in the unit of two-body relaxation time is 2.407360e-05

#############################################################################

Final time of the simulation in the unit of free-fall time is 2.464633e+01

Final time of the simulation in the unit of two-body relaxation time is 1.516637e-03

#############################################################################

#############################################################################

#############################################################################

#############################################################################

3-th component: Exponential disk

#############################################################################

Total number of particles Ntot is 1163956 (about 2^20)

Range of idx for the component is [32239136, 33403091]

Mass of each N-body particle m is 4.532817e+04 Msun

#############################################################################

Total mass of the component Mtot is 5.276000e+10 Msun

Scale radius of the component rs is 3.123000e+00 kpc

#############################################################################

Scale height of the component zd is 3.000000e-01 kpc

‘‘ENABLE_VARIABLE_SCALE_HEIGHT’’ is on.

Dimming height of the component is 16.000000 times zd

Retrograding fraction (input) is 0.000000e+00

Retrograding fraction (output) is 8.591390e-07

Central surface density Sigma0 is 1.799453e-01 g / cm2

Circular speed at scale radius is 2.895863e+02 km / s

Maximum circular speed is 3.472355e+02 km / s

Circular speed is maximized at 8.250000e+00 kpc

‘‘ENFORCE_EPICYCLIC_APPROXIMATION’’ is off.

Horizontal velocity dispersion is 6.685713e+00 km / s

Vertical velocity dispersion is 8.972836e+01 km / s

Toomre’s Q-value at scale radius is 1.332559e-01
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Minimum of Toomre’s Q-value is 8.978121e-02 at R = 7.984375e+00 kpc,

when excluding central region (estimation from scale height profile)

Minimum of Toomre’s Q-value is 8.978121e-02 at R = 7.984375e+00 kpc

#############################################################################

Representative scales:

Half-mass radius r_{1/2} is 5.418332e+00 kpc

Effective radius R_{eff} is 5.237401e+00 kpc

#############################################################################

Cutoff radius of the component is 3.000000e+01 kpc

Cutoff width of the component is 3.000000e+00 kpc

Cutoff radius over scale radius is 9.606148e+00

Cutoff width over scale radius is 9.606148e-01

Cutoff energy of the component is 1.920546e-137 E+10 erg / g

(= 2.643226e-142 G Mtot / rs)

#############################################################################

Total number of particles within the scale length is 7.111970e+05

Enclosed mass of all components within the scale length is 3.223726e+10 Msun

Free-fall time at the scale length is 1.609724e+01 Myr

Rotation time scale at the scale length is 6.625527e+01 Myr

Two-body relaxation time at the scale length is 4.849586e+04 Myr

#############################################################################

Snapshot interval in the unit of free-fall time is 1.553061e+00

Snapshot interval in the unit of rotation time scale is 3.773285e-01

Snapshot interval in the unit of two-body relaxation time is 5.155079e-04

#############################################################################

Final time of the simulation in the unit of free-fall time is 9.784284e+01

Final time of the simulation in the unit of rotation time scale is 2.377169e+01

Final time of the simulation in the unit of two-body relaxation time is 3.247700e-02

#############################################################################

#############################################################################

#############################################################################

#############################################################################

4-th component: Exponential disk

#############################################################################

Total number of particles Ntot is 151340 (about 2^17)

Range of idx for the component is [33403092, 33554431]

Mass of each N-body particle m is 4.532840e+04 Msun

#############################################################################

Total mass of the component Mtot is 6.860000e+09 Msun

Scale radius of the component rs is 3.123000e+00 kpc

#############################################################################

Scale height of the component zd is 1.000000e+00 kpc

‘‘ENABLE_VARIABLE_SCALE_HEIGHT’’ is on.

Dimming height of the component is 16.000000 times zd

Retrograding fraction (input) is 0.000000e+00

Retrograding fraction (output) is 0.000000e+00
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Central surface density Sigma0 is 2.339698e-02 g / cm2

Circular speed at scale radius is 2.895863e+02 km / s

Maximum circular speed is 3.472355e+02 km / s

Circular speed is maximized at 8.250000e+00 kpc

‘‘ENFORCE_EPICYCLIC_APPROXIMATION’’ is off.

Horizontal velocity dispersion is 8.692947e-01 km / s

Vertical velocity dispersion is 1.112269e+02 km / s

Toomre’s Q-value at scale radius is 1.332559e-01

Minimum of Toomre’s Q-value is 8.978121e-02 at R = 7.984375e+00 kpc,

when excluding central region (estimation from scale height profile)

Minimum of Toomre’s Q-value is 8.978121e-02 at R = 7.984375e+00 kpc

#############################################################################

Representative scales:

Half-mass radius r_{1/2} is 5.374424e+00 kpc

Effective radius R_{eff} is 5.237401e+00 kpc

#############################################################################

Cutoff radius of the component is 3.000000e+01 kpc

Cutoff width of the component is 3.000000e+00 kpc

Cutoff radius over scale radius is 9.606148e+00

Cutoff width over scale radius is 9.606148e-01

Cutoff energy of the component is 5.749344e-152 E+10 erg / g

(= 6.085671e-156 G Mtot / rs)

#############################################################################

Total number of particles within the scale length is 7.111970e+05

Enclosed mass of all components within the scale length is 3.223726e+10 Msun

Free-fall time at the scale length is 1.609724e+01 Myr

Rotation time scale at the scale length is 6.625527e+01 Myr

Two-body relaxation time at the scale length is 4.849586e+04 Myr

#############################################################################

Snapshot interval in the unit of free-fall time is 1.553061e+00

Snapshot interval in the unit of rotation time scale is 3.773285e-01

Snapshot interval in the unit of two-body relaxation time is 5.155079e-04

#############################################################################

Final time of the simulation in the unit of free-fall time is 9.784284e+01

Final time of the simulation in the unit of rotation time scale is 2.377169e+01

Final time of the simulation in the unit of two-body relaxation time is 3.247700e-02

#############################################################################

#############################################################################

D.2 Experiment on individual orbits

As the reader may noticed, the DMH consider to generate the initial conditions is a classical
NFW sphere, then we have an axisymmetric system (nuclear region, bulge, double exponential
disk and DMH). In order to introduce a strong source of chaos in the DMH (2nd component in
the hydra.info.txt file, Section D.1), the integration with the LP-VIcode is done using the
milkywayhydra.pav file with the option 2 of the DMH selected, and given it a full bi–triaxial
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shape.

As we are not interested in analysing a real system, but making the comparison on the
computations of two code flavours on the same individual particles, we are not going to relax
the system before doing the calculations. That is, we are going to integrate for 6.135 u.t. an
axisymmetric distribution of initial conditions in a non-axisymmetric potential.

D.2.1 Using a TI model

We take 500 initial conditions randomly selected from the DMH sphere (MAGI returns 32130154
initial conditions for the DMH2) and integrate them for 6.135 u.t. (6 Gyr) using the Hydra 2.0
TI version of our milkywayhydra.pav with all LP-VIcode flags activated, i.e. all quantities
available are now ON.

After the integration is finished, we select three orbits with completely different behaviours:
orbit labelled “1” seems to be a stable regular orbit, “2” an unstable regular orbit (sticky or
may be mildly chaotic) and “3” is definitely a chaotic orbit (according to MEGNO criteria,
middle right panel of Fig. D.2). On these three initial conditions, we have all the quantities
that the LP-VIcode can offer applying both flavours of the milkywayhydra.pav: the pre–
SMART flavour and the SMART flavour. In Fig. D.1 we present all the physical data for each
orbit, while in Figs. D.2 and D.3 we show all the CIs that the LP-VIcode has available in its
library.

Apart from the RLI, the coincidence between the results given by both flavours is total. There
are differences in the RLI because such indicator uses two different orbits to be computed,
and the selection of the shadow (second) orbit could differ. Then, the differences with the
RLI are expected. However, the classification is the same for all the three orbits of the sample
which is expected.

D.2.2 Using a PTD model

We integrate again the previously sample of 500 initial conditions, but using the Hydra 2.0
periodic time dependent (PTD) version of the milkywayhydra.pav, i.e. we activate the bar
and the spiral arms (but growth factor off, i.e. no cosmological evolution for such compo-
nents, just periodic dependence). We select the same three orbits as before and the results
are shown in Fig. D.4 where the x(t), the projection of the three orbits on the plane as well
as the projection for the chaotic orbit alone is shown on the top row, at the left, middle and
right panels, respectively. Also, the time evolution of the energy and that of the CIs OFLI
and MEGNO are presented on the bottom row, left, middle and right panels, respectively.

It is not our intention here to make a full dynamical analysis of the orbits considered in the
experiment, but to make a couple of relevant observations. First, orbits one and two show
no evident signs of differences in their computation of the phase space coordinates by both

2The complete distribution can be obtained from the hydra.summary.txt and it is the following: 4412
particles in the nuclear region, 104570 in the bulge, 32130154 in the DMH, 1163956 and 151340 in the thin
and thick disks, respectively.
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Figure D.1: Time evolution of the physical quantities. Top row: energy, last apocentre and
pericentre of the orbit. Middle top row: number of periods, projection of the orbit on the
xy–plane and its 3–dimensional representation. Middle row: positions, coordinates x, y and
z. Middle bottom row: velocities, components x, y and z. Bottom row: angular momentum,
components x, y and z.
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Figure D.2: Chaos indicators. Top row: the positive Lyapunov Indicators (L1, L2 and L3).
Middle row: the maximum Lyapunov Indicador (maxLI), the Relative Lyapunov Indicator
(RLI) and the Mean Exponential Growth factor of Nearby Orbits (MEGNO). Bottom row:
the Slope Estimation of the largest Lyapunov Characteristic Exponent (SElLCE), the Fast
Lyapunov Indicator (FLI) and the Orthogonal Fast Lyapunov Indicator (OFLI).
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Figure D.3: Chaos indicators continuation. Top row: the Smaller ALignment Index (SALI)
and the Generalized ALignment Index (GALI2 and GALI3). Middle row: GALI4, GALI5 and
GALI6. Bottom row: the Spectral Distance (SD) and the dynamical Spectra of Stretching
Numbers (SSN1 and SSN2).
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flavours (top left and middle panels of Fig. D.43). However, there is such sign at the end of
the integration in some CIs (for instance, MEGNO, bottom right panel of Fig. D.4) while
there is no clear sign on others (for instance, OFLI, bottom middle panel of same figure).
Therefore, the reason for this somehow elusive discrepancy must lie on the evolution of the
deviation vectors, which is expected when using two different programs to follow them on a
TD potential: deviation vectors might evolve different even though base orbits are almost
the same. The extreme case occurs with the third orbit (the one classified like chaotic in the
TI model). Here we have clear signs of discrepancies right from the beginning: i.e. on their
phase space coordinates (top right panel of Fig. D.4 shows the projection of the orbit on the
plane). Also, the energy differs (bottom left panel of Fig. D.4) and thus, those differences
between flavours are reflected on the CIs very easily, indeed. Again, this is totally expected,
but in this case reinforced on the most probable chaotic nature of the orbit, i.e.: deviation
vectors evolve different because base orbits are different.

Then, the first remark is that despite the fact that there are differences between the curves for
both flavours, this is expected as they are not computed in the same way on a TD potential
(where phase–space volumes are not conserved), and that difference increases with the chaotic
character of the orbit. The second and more important remark is that the character of the
orbits computed by both flavours seems to agree perfectly well. That is, all three orbits seem
to have the same classification with all CIs independently of the flavour used to compute
them, which is what really matters. For instance, notice that the probable chaotic orbit has
an exponential profile with the OFLI and increases with time in case of the MEGNO (clear
signs of chaotic behaviour in time independent potentials), and this happens using both
flavours. Therefore, the characterization of the orbits do not vary from one flavour of the
milkywayhydra.pav to another. In other words, the regular orbit (according to MEGNO in
the TI model) is still regular for both flavours, the unstable regular or mildly chaotic seems to
be characterized equally by both flavours and, last but not least, the aforementioned chaotic
orbit remains clearly chaotic for both flavours of the milkywayhydra.pav.

D.2.3 Using a FTD model

We integrate one more time the sample of 500 initial conditions, but in this case using the
Hydra 2.0 full TD (FTD) version of the milkywayhydra.pav, i.e. not only we activate the
bar and the spiral arms but we turn on the growth factor so the time dependent components
are introduced in a more realistic way. Then, both components are not present from the
beginning of the integration as in the PTD experiment, but they start to grow slowly until
they reach their final amplitudes by 3.068 u.t. (i.e. 3 Gyr). The results for the same three
orbits used with the TI and PTD models are shown in Fig. D.5 where the x(t), the projection
of the three orbits on the plane as well as the projection for the chaotic orbit alone is shown
on the top row, at the left, middle and right panels, respectively. Also, the time evolution
of the energy and that of the CIs OFLI and MEGNO are presented on the bottom row, left,
middle and right panels, respectively.

The observations given in last section also applied in this experiment (see Fig. D.5 and com-
pare with Fig. D.4). However, the differences are less evident, at least for the first part of

3There are numerical differences, but they are rather small and thus, they are not evident in the plots.
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Figure D.4: Experiment on the PTD model. Top row: x(t) (left panel), (x, y) (middle panel)
and (x, y) for the chaotic orbit alone (right panel). Bottom row: energy (left panel), OFLI
(middle panel) and MEGNO (right panel).

the integration. The reason is that the time dependent components (bar and spiral arms) are
now growing slowly and they are not present at full amplitude from the start, as in the pre-
vious experiment (PTD experiment). Then, at the beginning of the integration, the system
resembles that of the TI model where both flavours matched completely. This can be seen
very clearly from the behaviours of the CIs on the chaotic orbit, OFLI and MEGNO (bottom
middle and right panels of Fig. D.5), where such orbit is depicted with equal curves with both
flavours until ∼ 0.7 u.t. Then, they start to be separated from each other, revealing that the
effect of the bar and the spiral arms starts to be relevant on the computation of the evolution
of the corresponding deviation vectors.

We are aware that the CIs should not be used so loosely to classify orbits in TD potentials,
but inhere we are not interested in the precise classification of the orbits, but in the level
of agreement of both flavours on plausible classifications. Then, these series of tests give
evidence in favour of our main hypothesis: both flavours of the milkywayhydra.pav are fully
compatible.

RESULT 0: this experiment on individual orbits allow us to confirm that the original
milkywayhydra.pav file is now double–check: not only expression by expression with al-
gebraic manipulators (Appendix B) but also as a whole with a completely separate automatic
differentiation code.

In order to see if this result is or is not circunstancial due to the small size of the sample
(visual inspection was only done on 3 orbits), we attempt to see if both flavours reach similar
conclusions on statistical samples as well. Therefore, in the next section we make some further
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Figure D.5: Experiment on the FTD model. Top row: x(t) (left panel), (x, y) (middle panel)
and (x, y) for the chaotic orbit alone (right panel). Bottom row: energy (left panel), OFLI
(middle panel) and MEGNO (right panel).

testing but considering a statistical meaningful sample of initial conditions.

D.3 Experiments on a statistical sample of orbits

D.3.1 First experiment: relaxing the thin disk component

In the next series of experiments we are going to focus our tests on the thin disk particles
alone (3rd component in the hydra.info.txt file, Section D.1), which is a component full
of rich dynamics. Then, MAGI returns 1163956 thin disk particles that are enough to have a
good representation of such component.

As mentioned before, the initial distribution of the particles generated with MAGI does not
follow exactly our (slightly modified) Hydra 2.0 TI model, because they were not autocon-
sistently generated. For instance, our DMH for the following experiments is not completely
spherical as the one used with MAGI, but oblate in the inner parts (parameter values are
shown below). Hereinafter we will try to mimic a real study, thus we need to take good care
of the details. Therefore, the next step before diving into the dynamics of the thin disk is to
achieve a relaxed distribution by integrating the 1163956 thin disk particles for around 9.6 u.t.
(∼ 9.39 Gyr) in the exact TI potential of the milkywayhydra.pav file (with the LP-VIcode).

After the unit conversion of the velocities from C.U. to km/s, we have the file with initial
conditions for the LP-VIcode: hydra.in. We set up the configuration and parameter files for
the latter code. In particular, the LP-VIcode.in reads:

# LP-VIcode version 2.0.2



102 APPENDIX D. VALIDATION

# Initial conditions file (max. 50 characters)

hydra1.in

# Prefix for output files (max. 50 characters)

hydra1

# Step of integration

0.0048d0

# Initial time; final time of integration

0.d0 9.6d0

# Screen (0=no, 1=yes) & orbit (0=no output, 1=output, 2=output additionals)

1 1

# Indicators: 0=don’t compute, 1=output for all t, 2=output only last value

# LIs, SALI, GALIs, SD & SSNs, RLI & LImax, MEGNO & SElLCE, FLI & OFLI

0 0 0 0 0 0 0

# Nr. of steps between outputs (when orbit or indicators are = 1)

400

# Initial dev. vectors (0 = at random, 1 = random orthonormal, 2=fixed)

1

# SALI & potential(t): normal saturation (=0) or restart dev. vectors (=1)

0

We are doing two parallel integrations, one with the LP-VIcode using the pre–SMART flavour
of the TI model and the other using the SMART flavour of the same model. They have the
following parameter values in the subroutine potinit:

************************************************************************

* NUCLEAR REGION

************************************************************************

* ADD-REM Parameter

* [SOURCE: Marinacci et al. 2014 (MNRAS, 437, 1750)]

* [COMMENT: M_nuclear = 2x10^8 M_sun]

gmsmbh=8.60234d2

* gmsmbh=0.d0

* [SOURCE: Launhardt et al. 2002 (A&A, 384, 112)]

epsmbh=0.03d0

************************************************************************

* GROWTH FACTOR

* BAR AND SPIRAL ARMS

************************************************************************

* ADD-REM Parameter

* [SOURCE: Monari et al. 2016 (MNRAS, 461, 3835)]

* atime=3.068d0

atime=0.d0
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************************************************************************

* PEANUT-SHAPED BULGE

************************************************************************

* Bulge spheroid

* ADD-REM Parameter

* [SOURCE: Marinacci et al. 2014 (MNRAS, 437, 1750)]

* [COMMENT: M_bulge = 4.74x10^9 M_sun]

gmbulge=2.03875458d4

* gmbulge=0.d0

epsbulge=0.835d0

* Bar

* ADD-REM Parameter

* [SOURCE: Monari et al. 2016 (MNRAS, 461, 3835)]

* alpha=0.01d0

alpha=0.d0

barcoef=8.331938927d6

rbar=3.5d0

phibar=5.65d0

* [COMMENT: bomegabar = -52.2 km s-1 kpc-1]

bomegabar=-52.2d0

************************************************************************

* SPIRAL ARMS

************************************************************************

* ADD-REM Parameter

* [COMMENT: Super strong spirals 200 per cent density contrast]

* armscoef=2279.d0

armscoef=0.d0

* [SOURCE: Monari et al. 2016 (MNRAS, 461, 3835)]

narms=2

nindex=1

p=0.17d0

rarms=1.d0

rscarms=3.124d0

phiarms=3.31d0

* [COMMENT: bomegaarms = -18.9 km s-1 kpc-1]

bomegarms=-18.9d0

* [COMMENT: scale height of the thin disc]

hs=0.3d0

* [COMMENT: Exclusion coefficient for inner spiral arms]
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* [COMMENT: corrotation radius]

excoefarms=4.08d0

************************************************************************

* DISK

************************************************************************

* (1) MN PROFILE

* ADD-REM Parameters

* [SOURCE: Marinacci et al. 2014 (MNRAS, 437, 1750), Model Aq-C-4/5]

* [COMMENT: M_disk = 5.961x10^10 M_sun]

* [COMMENT: e_s = 3.124 kpc]

* [COMMENT: e_h = 0.3 kpc]

* gmdiskmn=25.63927437d4

gmdiskmn=0.d0

epscalemn=3.124d0

epsheightmn=0.3d0

* (2) EXPONENTIAL PROFILE

* Thin disk

* ADD-REM Parameters

* [SOURCE: Binney J., Tremaine S., 2008, Galactic Dynamics: 2nd Ed.]

* [SOURCE: Monari et al. 2016 (MNRAS, 461, 3835)]

* [SOURCE: Smith et al. 2015 (MNRAS, 448, 2934)]

* [COMMENT: M^thin_disk = 5.276x10^10 M_sun (88.5% MN PROFILE)]

* [COMMENT: R^thin_d = 3.124 Gyr]

* [COMMENT: h^thin_z = 0.3 kpc]

gmdisk(1)=3.65402813d4

gmdisk(2)=-1.308919778d6

gmdisk(3)=1.525374597d6

* gmdisk(1)=0.d0

* gmdisk(2)=0.d0

* gmdisk(3)=0.d0

epscale(1)=1.751620652d0

epsheight(1)=0.357969749d0

epscale(2)=8.045207335d0

epsheight(2)=0.357969749d0

epscale(3)=7.007698163d0

epsheight(3)=0.357969749d0

* Thick disk

* ADD-REM Parameters

* [SOURCE: Binney J., Tremaine S., 2008, Galactic Dynamics: 2nd Ed.]
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* [SOURCE: Monari et al. 2016 (MNRAS, 461, 3835)]

* [SOURCE: Smith et al. 2015 (MNRAS, 448, 2934)]

* [COMMENT: M^thick_disk = 0.686x10^10 M_sun (11.5% MN PROFILE)]

* [COMMENT: R^thick_d = 3.124 Gyr]

* [COMMENT: h^thick_z = 1 kpc]

gmdiskthk(1)=3.9689420d3

gmdiskthk(2)=-1.687186076d5

gmdiskthk(3)=1.986529253d5

* gmdiskthk(1)=0.d0

* gmdiskthk(2)=0.d0

* gmdiskthk(3)=0.d0

epscalethk(1)=0.908485192d0

epsheightthk(1)=1.41014739d0

epscalethk(2)=7.026555501d0

epsheightthk(2)=1.41014739d0

epscalethk(3)=6.213630283d0

epsheightthk(3)=1.41014739d0

************************************************************************

* DARK MATTER HALO

************************************************************************

* (1) BI-TRIAXIAL EXTENSION NFW MODEL

* ADD-REM Parameter

* [SOURCE: Marinacci et al. 2014 (MNRAS, 437, 1750), Model Aq-C-4/5]

* [COMMENT: M_200 = 145.64x10^10 M_sun]

* [COMMENT: c_nfw = 16.0287081]

acoef=3308059.4167264947d0

* acoef=0.d0

rs=14.63d0

scoefi(1)=1.02d0

scoefi(2)=1.02d0

scoefi(3)=0.958749185d0

scoefe(1)=1.d0

scoefe(2)=1.d0

scoefe(3)=1.d0

* (2) MODIFIED LOGARITHMIC MODEL

* ADD-REM Parameter

* [COMMENT: v_halo = 166.258 km/s]

* vhalo=166.258d0

vhalo=0.d0



106 APPENDIX D. VALIDATION

* [SOURCE: Vera-Ciro & Helmi 2013 (ApJL, 773:L4)]

d=12.d0

ra=30.d0

qcoef(1)=1.d0

qcoef(2)=1.d0

qcoef(3)=0.9d0

qqcoef(1)=1.38d0

qqcoef(2)=1.d0

qqcoef(3)=1.36d0

ascoef(1)=0.121869343d0

ascoef(2)=-0.992546152d0

wcoef(1)=0.992946717d0

wcoef(2)=0.532153052d0

wcoef(3)=0.114888764d0

Notice the zero values for the ADD-REM parameters associated with the bar and the spiral
arms (alpha and armscoef, respectively, in order to have the TI model), as well as for the
MN disk (option 1, gmdiskmn) and the modified logarithmic DMH (option 2, vhalo) and the
growth factor (atime, i.e. no cosmological evolution).

Using the pre–SMART version

Checking for errors, there were just one orbit that did not finish the integration.

Fig. D.6 presents the evolution of the distribution of thin disk initial conditions on the disk
plane, showing the slow convergence to a new relaxed system. In Fig. D.7 we show such con-
vergence of the initial particle distribution to a sufficiently relaxed system by 9.6 u.t., following
the actual profile of the (slightly modified) Hydra 2.0 TI version of the milkywayhydra.pav.

Using the SMART version

We compute the accelerations with SMART. No variational equations are computed because
we only need to integrate the equations of motion.

Checking for errors, there were just one orbit that did not finish the integration (the same
orbit as with the pre–SMART flavour).

On the left panel, Fig. D.8 shows the convergence curves of the initial particle distribution us-
ing the SMART flavour of the (slightly modified) Hydra 2.0 TI version of the milkywayhydra.pav
file. Compare with the distributions achieved by the pre–SMART flavour, left panel of Fig. D.7.
They look exactly the same. Indeed, on the right panel (Fig. D.8) we plot the differences
between both pre–SMART and SMART new relaxed distributions at 9.6 u.t. (linear scale in this
case). The coincidence is clear, there is not a single particle difference with both versions of
the milkywayhydra.pav.
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Figure D.6: Evolution of the distribution of thin disk initial conditions on the disk plane.

Figure D.7: Convergence of MAGI initial conditions to a new relaxed system after 9.6 u.t. using
the pre–SMART milkywayhydra.pav. Left panel: logarithmic scale. Right panel: linear scale
for −9.6 u.t. and 0 u.t. profiles alone.
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Figure D.8: Convergence of MAGI initial conditions to a new relaxed system after 9.6 u.t. using
the SMART milkywayhydra.pav. Left panel: logarithmic scale. Right panel: linear scale for
the differences between both flavours after 9.6 u.t. of evolution, they are exactly the same.

RESULT 1: this first experiment on a statistical sample of orbits shows that both flavours
of the milkywayhydra.pav are compatible when SMART is only used to compute automatically
the accelerations in a time independent model.

Now that we have reached convergence to our (slightly modified) Hydra 2.0 TI model (after
9.6 u.t.), we can use the latter relaxed profile of new initial conditions to integrate it for an
additonal 6.135 u.t. (6 Gyr) time interval, but in this case we are going to test two different
configurations of the TD milkywayhydra.pav (i.e. bar and spiral pattern are now both
activated). One will be using the so–called (slightly modified) Hydra 2.0 PTD model (growth
factor off, i.e. no cosmological evolution of bar or spiral arms) while the other will be the
(slightly modified) Hydra 2.0 FTD model (growth factor on).

D.3.2 Second experiment: computation of the equations of motion

Now that we have a new relaxed thin disk, we use the full milkywayhydra.pav file following
two different (slightly modified) Hydra 2.0 settings: (a) the PTD configuration where the
bar and the spiral arms are activated at full strength right from the beginning and the in-
tegration is done for another 6.135 u.t. time interval, and (b) the FTD configuration where
those time dependent components grow for the first 3.068 u.t. until they reach their maxi-
mum amplitudes, while keeping them at those values for the rest of the 6.135 u.t. time interval
(Section 2.4 for further details).

We set up the configuration and parameter files for the LP-VIcode, particularly the LP-VIcode.in
reads:

# LP-VIcode version 2.0.2

# Initial conditions file (max. 50 characters)

hydra2.in

# Prefix for output files (max. 50 characters)
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hydra2

# Step of integration

0.004908d0

# Initial time; final time of integration

0.d0 6.135d0

# Screen (0=no, 1=yes) & orbit (0=no output, 1=output, 2=output additionals)

1 1

# Indicators: 0=don’t compute, 1=output for all t, 2=output only last value

# LIs, SALI, GALIs, SD & SSNs, RLI & LImax, MEGNO & SElLCE, FLI & OFLI

0 0 0 0 0 0 0

# Nr. of steps between outputs (when orbit or indicators are = 1)

625

# Initial dev. vectors (0 = at random, 1 = random orthonormal, 2=fixed)

1

# SALI & potential(t): normal saturation (=0) or restart dev. vectors (=1)

0

With 625 steps between outputs we have an output file (for the orbits) made of blocks of 4
lines each, being those lines: (1) the initial condition (initial time 0 u.t.), (2) at ∼ 3.068 u.t.
(the moment when the bar and spiral arms reach their maximum and final amplitudes in case
of the labelled “FTD” experiment), (3) at 6.135 u.t. (the final integration time) and (4) a
blank line which divides the orbits.

Once again, we are doing two parallel integrations for each of both experiments, one with
the LP-VIcode using a pre–SMART flavour (the initial conditions are those computed by the
pre–SMART flavour in the first experiment after 9.6 u.t., i.e. the final integration time for the
relaxing stage) and the other using its SMART counterpart (in this case, the initial conditions
are those computed by the SMART flavour in the first experiment after 9.6 u.t.). The potinit

subroutine section reads as follows for both PTD and FTD experiments:

************************************************************************

* NUCLEAR REGION

************************************************************************

* ADD-REM Parameter

* [SOURCE: Marinacci et al. 2014 (MNRAS, 437, 1750)]

* [COMMENT: M_nuclear = 2x10^8 M_sun]

gmsmbh=8.60234d2

* gmsmbh=0.d0

* [SOURCE: Launhardt et al. 2002 (A&A, 384, 112)]

epsmbh=0.03d0

************************************************************************

* PEANUT-SHAPED BULGE

************************************************************************
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* Bulge spheroid

* ADD-REM Parameter

* [SOURCE: Marinacci et al. 2014 (MNRAS, 437, 1750)]

* [COMMENT: M_bulge = 4.74x10^9 M_sun]

gmbulge=2.03875458d4

* gmbulge=0.d0

epsbulge=0.835d0

* Bar

* ADD-REM Parameter

* [SOURCE: Monari et al. 2016 (MNRAS, 461, 3835)]

alpha=0.01d0

* alpha=0.d0

barcoef=8.331938927d6

rbar=3.5d0

phibar=5.65d0

* [COMMENT: bomegabar = -52.2 km s-1 kpc-1]

bomegabar=-52.2d0

************************************************************************

* SPIRAL ARMS

************************************************************************

* ADD-REM Parameter

* [COMMENT: Super strong spirals 200 per cent density contrast]

armscoef=2279.d0

* armscoef=0.d0

* [SOURCE: Monari et al. 2016 (MNRAS, 461, 3835)]

narms=2

nindex=1

p=0.17d0

rarms=1.d0

rscarms=3.124d0

phiarms=3.31d0

* [COMMENT: bomegaarms = -18.9 km s-1 kpc-1]

bomegarms=-18.9d0

* [COMMENT: scale height of the thin disc]

hs=0.3d0

* [COMMENT: Exclusion coefficient for inner spiral arms]

* [COMMENT: corrotation radius]

excoefarms=4.08d0

************************************************************************



D.3. EXPERIMENTS ON A STATISTICAL SAMPLE OF ORBITS 111

* DISK

************************************************************************

* (1) MN PROFILE

* ADD-REM Parameters

* [SOURCE: Marinacci et al. 2014 (MNRAS, 437, 1750), Model Aq-C-4/5]

* [COMMENT: M_disk = 5.961x10^10 M_sun]

* [COMMENT: e_s = 3.124 kpc]

* [COMMENT: e_h = 0.3 kpc]

* gmdiskmn=25.63927437d4

gmdiskmn=0.d0

epscalemn=3.124d0

epsheightmn=0.3d0

* (2) EXPONENTIAL PROFILE

* Thin disk

* ADD-REM Parameters

* [SOURCE: Binney J., Tremaine S., 2008, Galactic Dynamics: 2nd Ed.]

* [SOURCE: Monari et al. 2016 (MNRAS, 461, 3835)]

* [SOURCE: Smith et al. 2015 (MNRAS, 448, 2934)]

* [COMMENT: M^thin_disk = 5.276x10^10 M_sun (88.5% MN PROFILE)]

* [COMMENT: R^thin_d = 3.124 Gyr]

* [COMMENT: h^thin_z = 0.3 kpc]

gmdisk(1)=3.65402813d4

gmdisk(2)=-1.308919778d6

gmdisk(3)=1.525374597d6

* gmdisk(1)=0.d0

* gmdisk(2)=0.d0

* gmdisk(3)=0.d0

epscale(1)=1.751620652d0

epsheight(1)=0.357969749d0

epscale(2)=8.045207335d0

epsheight(2)=0.357969749d0

epscale(3)=7.007698163d0

epsheight(3)=0.357969749d0

* Thick disk

* ADD-REM Parameters

* [SOURCE: Binney J., Tremaine S., 2008, Galactic Dynamics: 2nd Ed.]

* [SOURCE: Monari et al. 2016 (MNRAS, 461, 3835)]

* [SOURCE: Smith et al. 2015 (MNRAS, 448, 2934)]

* [COMMENT: M^thick_disk = 0.686x10^10 M_sun (11.5% MN PROFILE)]

* [COMMENT: R^thick_d = 3.124 Gyr]
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* [COMMENT: h^thick_z = 1 kpc]

gmdiskthk(1)=3.9689420d3

gmdiskthk(2)=-1.687186076d5

gmdiskthk(3)=1.986529253d5

* gmdiskthk(1)=0.d0

* gmdiskthk(2)=0.d0

* gmdiskthk(3)=0.d0

epscalethk(1)=0.908485192d0

epsheightthk(1)=1.41014739d0

epscalethk(2)=7.026555501d0

epsheightthk(2)=1.41014739d0

epscalethk(3)=6.213630283d0

epsheightthk(3)=1.41014739d0

************************************************************************

* DARK MATTER HALO

************************************************************************

* (1) BI-TRIAXIAL EXTENSION NFW MODEL

* ADD-REM Parameter

* [SOURCE: Marinacci et al. 2014 (MNRAS, 437, 1750), Model Aq-C-4/5]

* [COMMENT: M_200 = 145.64x10^10 M_sun]

* [COMMENT: c_nfw = 16.0287081]

acoef=3308059.4167264947d0

* acoef=0.d0

rs=14.63d0

scoefi(1)=1.02d0

scoefi(2)=1.02d0

scoefi(3)=0.958749185d0

scoefe(1)=1.d0

scoefe(2)=1.d0

scoefe(3)=1.d0

* (2) MODIFIED LOGARITHMIC MODEL

* ADD-REM Parameter

* [COMMENT: v_halo = 166.258 km/s]

* vhalo=166.258d0

vhalo=0.d0

* [SOURCE: Vera-Ciro & Helmi 2013 (ApJL, 773:L4)]

d=12.d0

ra=30.d0
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qcoef(1)=1.d0

qcoef(2)=1.d0

qcoef(3)=0.9d0

qqcoef(1)=1.38d0

qqcoef(2)=1.d0

qqcoef(3)=1.36d0

ascoef(1)=0.121869343d0

ascoef(2)=-0.992546152d0

wcoef(1)=0.992946717d0

wcoef(2)=0.532153052d0

wcoef(3)=0.114888764d0

Notice in this case (compare with the setting for the first experiment, Section D.3.1), the non–
zero values for the ADD-REM parameters associated with the bar and the spiral arms (alpha
and armscoef, respectively) in order to have the TD model.

The bar and spiral arms growth section for the PTD experiment is:

************************************************************************

* GROWTH FACTOR

* BAR AND SPIRAL ARMS

************************************************************************

* ADD-REM Parameter

* [SOURCE: Monari et al. 2016 (MNRAS, 461, 3835)]

* atime=3.068d0

atime=0.d0

while for the FTD experiment, the growth factor must be non–zero and equal to the time
when the time dependent components reach they final amplitudes (3.068 u.t. for the present
set of simulations):

************************************************************************

* GROWTH FACTOR

* BAR AND SPIRAL ARMS

************************************************************************

* ADD-REM Parameter

* [SOURCE: Monari et al. 2016 (MNRAS, 461, 3835)]

atime=3.068d0

* atime=0.d0

Using the pre–SMART version

First, we check all the initial conditions that did not finish the integration.

PTD model. Initial conditions (0 u.t., initial time): 1163955. By ∼ 3.068 u.t.: 1163933 and
by the final integration time, 6.135 u.t.: 1163907, which means that 48 initial conditions have
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Figure D.9: Mean radial velocity maps. Left panels: full maps at ∼ 3.068 u.t. Middle panels:
full maps at 6.135 u.t. Right panels: zoom–in region at 6.135 u.t. (details in the text). Top
panels show the mean radial velocity maps for the PTD experiment. Bottom panels show the
same maps as before but for the FTD experiment.

not finished.

FTD model. Initial conditions (0 u.t., initial time): 1163955. By ∼ 3.068 u.t.: 1163940 and
by the final integration time, 6.135 u.t.: 1163904, which means that 51 initial conditions have
not finished.

In Fig. D.9 we show the distribution on the plane of the mean radial velocity of thin disk
particles using the pre–SMART milkywayhydra.pav. Full maps are presented on the left and
middle panels (at ∼ 3.068 and 6.135 u.t., respectively) while a selected zoom–in region (at
6.135 u.t.) is presented on the right panels. The zoom–in region on the top, shows also
the procedure of making these plots: each circle represent the mean radial velocity inside
the square cell of 0.5 kpc of side where it is calculated, and the background is then filled
with an interpolation scheme by the plotting program, gnuplot. Top panels show the mean
radial velocity maps for the PTD experiment, i.e. when the bar and the spiral arms are at
full strength from the beginning to the end of the simulation. Bottom panels show the same
maps as before but when the bar and the spiral arms grow slowly until they reach full strength
at 3.068 u.t., which amplitudes are kept until the end of the simulation (FTD experiment).
Notice that the color scale highlights differences up to 1 km/s.

Using the SMART version

We compute the accelerations with the SMART code. No variational equations are computed
because we only need to integrate the equations of motion.
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Figure D.10: Differences in mean radial velocity maps. Left panels: full maps at 3.068 u.t.
Middle panels: full maps at 6.135 u.t. Right panels: zoom–in region at 6.135 u.t. Top panels
show the differences in mean radial velocity maps for the PTD model experiment. Bottom
panels show the same difference maps as before but for the FTD model experiment.

First we check all the initial conditions that did not finish the integration.

PTD model. Initial conditions (0 u.t., initial time): 1163955. By ∼ 3.068 u.t.: 1163934 and
by the final integration time, 6.135 u.t.: 1163896, which means that 59 initial conditions have
not finished.

FTD model. Initial conditions (0 u.t., initial time): 1163955. By ∼ 3.068 u.t.: 1163947 and
by the final integration time, 6.135 u.t.: 1163907, which means that 48 initial conditions have
not finished.

Fig. D.9 is recreated here but using automatic differentiation to build the pav file. Then, in
Fig D.10 we show the differences between the mean radial velocity maps using the pre–SMART
(Fig. D.9) and SMART flavours of the milkywayhydra.pav file. Notice that in this case, we
need to use a color scale that highlights differences up to a fraction of a km/s to reveal the
distribution of the discrepancies, otherwise they are all wash out.

Once again, the small difference between both sets of maps supports the initial hypothesis of
a clear agreement between both versions.

Finally, we repeat the computation with the pre–SMART version but on the samples previ-
ously computed with the SMART version. That is, now the initial conditions are exactly the
same. On the second experiment, the initial conditions were slightly different due to the fact
that the files by 9.6 u.t. on the first experiment (i.e. the initial conditions on the current
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second experiment) were not exactly the same after the computation using both flavours of
the milkywayhydra.pav (there were differences below the 5/6th decimal, as much).

SMART PTD model: checking with pre–SMART. Initial conditions (0 u.t.): 1163955. By
3.068 u.t.: 1163936 and by the final integration time, 6.135 u.t.: 1163895, which means that
60 initial conditions have not finished.

SMART FTD model: checking with pre–SMART. Initial conditions (0 u.t.): 1163955. By
3.068 u.t.: 1163945 and by the final integration time, 6.135 u.t.: 1163912, which means that
43 initial conditions have not finished.

Now, as mentioned before, the initial conditions are chosen to be exactly the same and the
results do improve in case of the FTD model, but not on the PTD model: in Fig. D.11 we
recreate Fig. D.10. Although there are still signs of discrepancies for the FTD model (bottom
panels, specially bottom right panel), they are less evident than in Fig. D.10 (compare the
bottom panels) which means that the small differences seen in bottom panels of Fig. D.10 are
mainly a consequence of the effect of the slightly differences in the initial conditions rather
than on a mismatch between both flavours. On the other hand, we see the same level of dis-
crepancies in the PTD model, see top panels of Figs. D.10 and D.11, which means that there
is still a chance of a potential disagrement between flavours, but very small indeed (notice
the color scale) which make it for most situations, irrelevant. Nevertheless, see next section
for more probable reasons for the missmatch.

RESULT 2: this second experiment on a statistical sample of orbits shows that both flavours
of the milkywayhydra.pav are compatible when SMART is also used to compute automatically
the accelerations in a full time dependent model.

D.3.3 Third experiment: computation of the first variational equations

In order to test the computation of the CIs over volumes that should share, statistically, simi-
lar dynamics, we select the initial conditions within the same region of the FTD model where
most of the discrepancies between flavours appeared (bottom right panel of Fig. D.10). Then,
the region is [−2 kpc, 2 kpc] on the plane and has 180336 initial conditions for both pre–SMART
and SMART flavours of the milkywayhydra.pav file. The initial conditions are those obtained
in the first experiment, after 9.6 u.t. of evolution computed with each flavour (Section D.3.1)
and thus, there are slightly differences between initial conditions for each flavour.

We set up the configuration and parameter files for the LP-VIcode, particularly the LP-VIcode.in
reads:

# LP-VIcode version 2.0.2

# Initial conditions file (max. 50 characters)

hydra3.in

# Prefix for output files (max. 50 characters)

hydra3

# Step of integration

0.004908d0
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Figure D.11: Differences in mean radial velocity maps using exactly the same initial condi-
tions. Left panels: full maps at 3.068 u.t. Middle panels: full maps at 6.135 u.t. Right panels:
zoom–in region at 6.135 u.t. (details in the text). Top panels show the differences in mean
radial velocity maps for the PTD model experiment. Bottom panels show the same difference
maps as before but for the FTD model experiment.

# Initial time; final time of integration

0.d0 6.135d0

# Screen (0=no, 1=yes) & orbit (0=no output, 1=output, 2=output additionals)

1 0

# Indicators: 0=don’t compute, 1=output for all t, 2=output only last value

# LIs, SALI, GALIs, SD & SSNs, RLI & LImax, MEGNO & SElLCE, FLI & OFLI

0 0 0 0 0 2 2

# Nr. of steps between outputs (when orbit or indicators are = 1)

625

# Initial dev. vectors (0 = at random, 1 = random orthonormal, 2=fixed)

1

# SALI & potential(t): normal saturation (=0) or restart dev. vectors (=1)

0

Then, only the MEGNO & SElLCE and FLI & OFLI are activated in order to limit the
computing time (see Section D.4). All the quantities provided by the LP-VIcode were tested
in Section D.2. Now, we are interested in comparing both flavours over the computation of
the first variational equations, so we proceed with only a small subset of the CIs provided by
the main code.
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Figure D.12: CIs maps computed with the pre-SMART flavour: OFLI and OFLI saturation
times (top left and right panels, respectively). MEGNO and MEGNO saturation times (bot-
tom left and right panels, respectively).

Using the pre–SMART version

In Fig D.12 we show maps according to the final values of a small set of CIs (OFLI and
MEGNO and their saturation times4) from the LP-VIcode’s library, and for the volume
under study.

Using the SMART version

We compute the accelerations and first variational equations with SMART.

In Fig D.13 we show maps according to the final values of a small set of CIs (OFLI and
MEGNO and their saturation times) from the LP-VIcode’s library, and for the volume under
study.

4The saturation time is defined as the time the associated chaos indicator reaches its saturation value
(saturates and it is stopped). In case of the OFLI the saturation value is 1016 and in case of the MEGNO, that
value is 30. The saturation time is a complementary quantity defined to recover structure beyond saturation
due to strong chaotic behaviour (further references in [16]).
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Figure D.13: CIs maps computed with the SMART flavour: OFLI and OFLI saturation times
(top left and right panels, respectively). MEGNO and MEGNO saturation times (bottom
left and right panels, respectively).

Despite the fact that the indicators are computed on slightly different initial conditions be-
cause the latter are the result of a 9.6 u.t. integration interval using different programs, the
final maps for both flavours (Fig. D.12 and Fig. D.13 for the pre–SMART and SMART flavours,
respectively) preserve the same characteristics as expected.

Notice also that the central region is the most chaotic one, thus supporting the idea that
the small discrepancies seen in the central part of the bottom right panel of Fig. D.10 (Sec-
tion D.3.2) might be caused by the chaotic nature exhibit inside such region, rather than
some numerical missmatch between flavours.

RESULT 3: this third experiment on a statistical sample of orbits shows that both flavours
of the milkywayhydra.pav are compatible when SMART is used to compute automatically not
only the accelerations (first and second experiments) but also the first variational equations
(third experiment) in a full time dependent model.
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D.4 Computing times

We use an Intel(R) Core(TM) i7–4790K CPU (4 cores, 8 threads) @ 4.00GHz with 8 GB
RAM5, Windows 7 Ultimate Service Pack 1, 64 bits, running a virtual machine Oracle VM
VirtualBox using Ubuntu 18.04 64 bits wth 4 GB RAM. The computing times are an average
among the four threads running simultaneously, if not stated otherwise. “With optimization”
means O3 flag on.

D.4.1 Experiment on individual orbits: with and without optimization

In the following experiment the computing times are not an average, but the time used by
one single core to do the calculations.

TI model

500 initial conditions with optimization. pre–SMART flavour: 6 min 27.711 s. SMART flavour:
9 min 26.413 s.

500 initial conditions without optimization. pre–SMART flavour: 15 min 37.402 s. SMART flavour:
54 min 55.131 s.

Then, the optimized pre–SMART flavour needs 68.45% the time of its counterpart SMART flavour
on this experiment on individual orbits (TI model, equations of motion, variational equations
and all LP-VIcode quantities activated), while the non–optimized pre–SMART flavour needs
28.45% the time of its counterpart SMART flavour on the same experiment.

PTD model

500 initial conditions with optimization. pre–SMART flavour: 9 min 5.009 s (302, 88%).
SMART flavour: 14 min 12.281 s.

500 initial conditions without optimization. pre–SMART flavour: 21 min 56.270 s (302,
88%). SMART flavour: 76 min 45.029 s.

FTD model

500 initial conditions with optimization. pre–SMART flavour: 8 min 55.107 s (420, 41%).
SMART flavour: 14 min 10.894 s (128, 85%; 225, 67%).

500 initial conditions without optimization. pre–SMART flavour: 21 min 24.395 s (245, 32%;
420, 41%). SMART flavour: 77 min 26.369 s (225, 67%; 245, 67%).

Then, the optimized pre–SMART flavour needs 62.89% the time of its counterpart SMART flavour
on this experiment on individual orbits (FTD model, equations of motion, variational equa-
tions and all LP-VIcode quantities activated), while the non–optimized pre–SMART flavour

5Further details at https://ark.intel.com/content/www/us/en/ark/products/80807/

intel-core-i7-4790k-processor-8m-cache-up-to-4-40-ghz.html.

https://ark.intel.com/content/www/us/en/ark/products/80807/intel-core-i7-4790k-processor-8m-cache-up-to-4-40-ghz.html
https://ark.intel.com/content/www/us/en/ark/products/80807/intel-core-i7-4790k-processor-8m-cache-up-to-4-40-ghz.html


D.4. COMPUTING TIMES 121

needs 27.64% the time of its counterpart SMART flavour on the same experiment.

The compilation with the optimization flag activated takes just a few seconds more than the
non–optimized compilation. Therefore, there is no justification to drop it, and there is no
further need to continue the comparison using non–optimized flavours. In the next section
and due to the large sample of initial conditions that must be processed, we are going to use
optimized flavours alone.

D.4.2 Experiments on a statistical sample of orbits: with optimization

D.4.2.1 First experiment

pre–SMART flavour: [average time] 573 min 35.113 s. 1163956 initial conditions from MAGI: 1
error (run4, id 108490, 0%) during the first 9.6 u.t.→ 1163955 valid initial conditions for the
rest of the experiments.

SMART flavour: [average time] 616 min 59.741 s. 1163956 initial conditions from MAGI: 1 error
(run4, id 108490, 0%) during the first 9.6 u.t. → 1163955 valid initial conditions for the rest
of the experiments.

Then, the optimized pre–SMART flavour needs 92.96% the time of its counterpart SMART flavour
on this first experiment (TI model and only equations of motion) on a big sample of initial
conditions (1163956).

D.4.2.2 Second experiment

pre–SMART flavour. PTD model: [average time] 513 min 40.954 s. 1163955 initial conditions
from LP-VIcode: 13, 14, 16 and 5 errors (run 1, run 2, run 3 and run 4, respectively) during
the 6.135 u.t.→ 1163907 valid initial conditions.

pre–SMART flavour. FTD model: [average time] 487 min 44.172 s. 1163955 initial conditions
from LP-VIcode: 17, 14, 11 and 9 errors (run 1, run 2, run 3 and run 4, respectively) during
the 6.135 u.t.→ 1163904 valid initial conditions.

SMART flavour. PTD model: [average time] 567 min 25.765 s. 1163955 initial conditions from
LP-VIcode: 15, 14, 15 and 15 errors (run 1, run 2, run 3 and run 4, respectively) during the
6.135 u.t.→ 1163896 valid initial conditions.

SMART flavour. FTD model: [average time] 552 min 5.518 s. 1163955 initial conditions from
LP-VIcode: 10, 14, 11 and 13 errors (run 1, run 2, run 3 and run 4, respectively) during the
6.135 u.t.→ 1163907 valid initial conditions.

Then, the optimized pre–SMART flavour needs ∼ 90%, and ∼ 88% the time of its counterpart
SMART flavour for the PTD and FTD models, respectively, on this second experiment (TD
model and only equations of motion) on a big sample of initial conditions (1163955).
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D.4.2.3 Third experiment

Only the MEGNO & SElLCE and FLI & OFLI were computed.

pre–SMART flavour. FTD model: [average time] 718 min 44.940 s. 180336 initial conditions
from LP-VIcode: 457, 447, 438 and 430 errors (run 1, run 2, run 3 and run 4, respectively)
during the 6.135 u.t.→ 178564 valid initial conditions.

SMART flavour. FTD model: [average time] 885 min 21.579 s. 180336 initial conditions from
LP-VIcode: 405, 458, 416 and 428 errors (run 1, run 2, run 3 and run 4, respectively) during
the 6.135 u.t.→ 178629 valid initial conditions.

Then, the optimized pre–SMART flavour needs ∼ 81% the time of its counterpart SMART flavour
on this third experiment (TD model, equations of motion and variational equations with
MEGNO & SElLCE and FLI & OFLI flags activated) on a big sample of initial conditions
(180336).

D.5 Conclusions

FINAL RESULT: the set of experiments presented in the previous sections supports the
initial hypothesis that both flavours of the tested milkywayhydra.pav are clearly compatible,
which means that:

1. the original or pre–SMART flavour of the milkywayhydra.pav is, indeed, working as
expected and it can be used with confidence;

2. the automatic differentiation pre-processing slave program SMART is also working as ex-
pected and it can be also used with confidence.

Finally, the original flavour of the milkywayhydra.pav file speeds up the computation with
regards to the automatic flavour, due to its more efficient coding. However, such difference in
speed is only large when the computation of variational equations is involved: between ∼ 20%
and ∼ 40% time reduction (with optimization on full time dependent models), depending on
the number of chaos indicators computed. Therefore, when chaos indicators need to
be computed on big samples of initial conditions, the original “handcrafted’ ver-
sion of the milkywayhydra.pav is worth using it over the automatic differentiation
flavour provided by SMART. In all other cases, SMART seems to be the right choice
due to the almost none effort from the user to set things up.
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